sort by

120 publications mentioning osa-MIR156c (showing top 100)

Open access articles that are associated with the species Oryza sativa and mention the gene name MIR156c. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 203
Arabidopsis miR156 complementarily binds to the 3′UTR of SPL3 mRNA and regulates its expression through translation inhibition and transcript cleavage [16, 29]. [score:8]
Overexpression of rice miR156 also resulted in decreased expression of the SPL target genes, suggesting the correlative interaction of SPL and miR156 in monocot plants [6]. [score:7]
Our results showed that many SBP-box genes, which were predicted to be targeted by miR156, have tissue specific expression pattern and the expression pattern diverged after gene duplication. [score:7]
The transcripts of the target SBP genes were also suppressed in other miR156 over -expression plants [29, 56]. [score:7]
By contrast, most putative target SBP genes with predicted miR156 target sites showed lower expression level in these tissues (Figs.   9 and 10). [score:7]
Some important developmental processes seem to be mediated by both miR156 and their target SBP-box genes since overexpression of miR156 resulted in various phenotypes, including increased number of leaves, delayed flowering and decreased apical dominance [28]. [score:6]
To predict the putative target sites of miR156, full length of BnaSBP genes including exon, intron and UTR sequences were analyzed using psRNATarget tool (http://plantgrn. [score:5]
Our results showed that the lower expression level of miR156 in 6098B with bigger branch angle than in Purler with smaller branch angle (Fig.   11) is negatively correlated with the expression difference of many SBP-box genes, eg. [score:5]
Different expression pattern of some BnaSBP genes and the negative correlation of transcription levels between miR156 and its target BnaSBP gene were observed in lines with different branch angle. [score:5]
Conservation of miR156 target site in SBP-box genesA larger number of miRNAs targets are transcription factors, such as SBP, MYB, NAC, ARF, GRAS, and AP2 [27]. [score:5]
Previous results showed that miR156 complementarily bind to SBP genes either at the coding or 3′UTR region and reduced gene activity by translation suppression or cleavage [27, 29]. [score:5]
SPL9 and SPL10 mediated the transition from high levels of miR156 to high levels of miR172 through direct activation of miR172 expression, thereby promoting the juvenile to adult phase transition [57, 62]. [score:4]
The different expression pattern between the miR156 and SBP-box genes in diverse tissues suggests that SBP/miR156 module may play an important role in the development processes. [score:4]
In present study, target prediction showed that 44 of the 58 BnaSBP genes were regulated by miR156. [score:4]
Eleven SBP-box gene groups, similar to those in Arabidopsis, were predicted to be targeted by miR156, implying the conservation of SBP/miR156 module regulation pattern. [score:4]
In Arabidopsis, miR156-SPL3 module controls FT expression to regulate ambient temperature-responsive flowering [56]. [score:4]
To analyze the expression pattern of miR156 and BnaSBP genes, twelve tissue samples were also collected from the same tissue site at the same developmental stage as the sample for RNA-seq. [score:4]
The expression level of miR156 was mostly abundant in bud and silique of Zhongshuang 11 at different developmental stages (Fig.   11a). [score:4]
Conserved motif identification and miR156 target site prediction. [score:3]
a The expression level of miR156 in the different tissue samples of Zhongshuang11. [score:3]
The other six At SBP genes including (AtSBP1, 7, 8, 12, 14, 16) are not targets of miR156. [score:3]
These results suggested that the transcript of miR156 is negatively correlated with the expression of most BnaSBP genes. [score:3]
BraSPL9-2 is the target of microRNA bra-miR156 and controls the heading time of Chinese cabbage [21]. [score:3]
BnaSBP5c possesses the binding site within the coding region, while the other three BnaSBP5 genes are targeted by miR156 in 3′UTR. [score:3]
b The expression level of miR156 in five tissue samples of Puler and 6098B respectively. [score:3]
Relative expression level of miR156 is varied across tissues. [score:3]
Fig. 11The expression patterns of miR156 in different tissue samples. [score:3]
Over -expression of miR156 in Arabidopsis significantly represses the SPL transcription and thus reduces apical dominance, leading to dwarfism and increases in total leaf number and plant biomass [28]. [score:3]
The 44 BnaSBP genes predicted to be targeted by miR156 are the homologous genes in Arabidopsis, which also formed 10 gene clusters. [score:3]
Diversification of BnaSBP genes was observed from many aspects, including phylogenesis, genomic structure, as well as location of miR156 target site. [score:3]
However, three BnaSBP genes targeted by miR156 differed from other genes. [score:3]
Forty-four SBP-box genes were ascertained to contain the putative miR156 binding site, with 30 and 14 of the genes targeted by miR156 at the coding and 3′UTR region, respectively. [score:3]
In Arabidopsis, 10 (AtSBP2, 3, 4, 5, 6, 9, 10, 11, 13, 15) out of 17 SBP genes were predicted or verified to be targeted by miR156. [score:3]
In addition to the regulatory roles of miR156, SBP-box genes were also shown to be regulated by miR529 in grasses [32]. [score:3]
It should be noted that all these genes, excluding BnaSBP11e, are not predicted to be targeted by the miR156. [score:3]
Bar indicates 0.05 aa substitution per residue MiR156 family in B. napus and their target site to BnaSBP genesSeven putative members of miR156 (BnaMiR156a-g) in oilseed rape were found after querying the miRBase database. [score:3]
Therefore, the miR156 target site in SBP-box genes is conserved across plant species. [score:3]
Relative expression levels of mature miR156 in different tissues were analyzed by qRT-PCR. [score:3]
Meanwhile, the expression level of miR156 in 6098B and Purler was also determined. [score:3]
Expression profile of miR156. [score:3]
Arabidopsis miR156 regulates tolerance to recurring heat stress and SPL genes are posttranscriptional regulated by miR156 after heat stress [30]. [score:3]
Stem-loop RT-PCR was used to examine miR156 expression level in different tissues following the procedure reported previously [43]. [score:3]
The homologous genes in oilseed rape are also predicted to be target of miR156. [score:3]
Conservation of miR156 target site in SBP-box genes. [score:3]
According to previous results, 11 out of 17 SBP genes in Arabidopsis are targeted by miR156. [score:3]
Many development processes mediated by SBP-box genes are closely linked to miR156. [score:2]
Computational analysis indicated that many SBP-box genes are regulated by miR156 family in Arabidopsis [27]. [score:2]
MiR156 was thus expected to be an important determinant for the expression of these BnaSBP genes. [score:2]
Recently, it is reported that miR156/SPLs modulates Arabidopsis lateral root development [31]. [score:2]
MiR156 family in B. napus and their target site to BnaSBP genes. [score:2]
BnaSBP2a, 2d, 3d, 3e, 5d, 8b, 9a, 9b, 10b, 11a, 11c, 13d and 15c (Figs.   9 and 10), indicating that the SBP/miR156 module is likely involved in regulating plant architecture in B. napus. [score:2]
The involvement of some BnaSBP genes as well as the SBP/miR156 module in plant architecture regulation was also implicated from the results. [score:2]
These results suggest that relationship between miR156 and SBP genes is conserved across species. [score:1]
Besides the stem sample of two materials, the transcription of miR156 was stronger in Purler than in 6098B of the other tissues. [score:1]
In present study, the transcript level of miR156 was abundant in bud and silique (Fig.   11). [score:1]
Fig. 6Sequence alignment of miR156 complementary sequences of the BnaSBP genes. [score:1]
The complementary sites of miR156 locate in the coding region of 30 BnaSBP genes, and in the 3′ UTR of the other 14 BnaSBP genes. [score:1]
Recently, thirty-two putative pre-mature structures of miR156 were predicted in B. napus by high throughput small RNA deep sequencing [47]. [score:1]
Bar indicates 0.05 aa substitution per residue Seven putative members of miR156 (BnaMiR156a-g) in oilseed rape were found after querying the miRBase database. [score:1]
MiR156 was predicted to bind to 3′UTR sequence of BnaSBP6d and BnaSBP10a, while the relative homologous gene in Arabidopsis were bound by miR156 at the coding region. [score:1]
Interestingly, miR156 and miR529 are correlated at the nucleotide level sharing a 14–16 nt binding site [33]. [score:1]
It was shown that 44 SBP proteins have miR156 binding site, with 30 and 14 at coding and 3′UTR regions, respectively (Fig.   6). [score:1]
Other BnaSBPs genes were amplified with 35 cycles Several BnaSBP genes carry the complementary sequences to miR156. [score:1]
Moreover, the relative transcript level of BnamiR156 in various tissues was also examined to study the functional relationship of SBP and miR156 genes. [score:1]
The level of miR156 was declined with a concomitant rise in SPL levels during the aging time in Arabidopsis [61]. [score:1]
[1 to 20 of 65 sentences]
2
[+] score: 182
In A. thaliana, two miRNAs, miR156 and miR172, regulated the juvenile to adult developmental phase change [38]; SPL9 and SPL10 promoted the expression of miR172b by binding to its promoter and acted independently of this and its target genes [38]; and the expression of miR156 was higher in the juvenile phase than in the adult phase, whereas the expression of miR172 was lower in the juvenile phase than in the adult phase [38]. [score:11]
Nine HvSPLs (HvSPL1, 3, 6, 11, 13, 15, 16, 17 and 23), including six that are targeted by miR156 (HvSPL3, 11, 13, 16, 17 and 23) were highly expressed and displayed tissue-specific patterns of expression. [score:7]
Interestingly, expression of miR156 targeted HvSPL18 and miR156 non -targeted HvSPL7 and HvSPL20 were unique to INF2 tissue. [score:7]
Liu J Cheng X Liu P Sun J miR156 -targeted SBP-Box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheatPlant Physiol. [score:6]
The miR156 -targeted SPL9 promoted sesquiterpene biosynthesis by binding to the promoter region of TPS21 [26] and it negatively regulated anthocyanin levels by modulating the expression of the MYB-bHLH-WD40 complex [27]. [score:6]
Importantly, tissue-specific differential expression of miR156 -targeted HvSPL genes also suggests that they have possible key role in barley growth and development. [score:6]
Since SPL/miR156 module control panicle branching by directly regulating the miR172/AP2 module in rice 30, 47, bract and ear glume development in maize 48, 49 and floral meristem identity in A. majus 2, 28, expression of HvSPL genes in the mir172 barley mutant was analysed. [score:6]
Splice variant 1 of HvSPL11 (HvSPL11 V1), which contained a miR156 target site, showed lower expression at vegetative and higher at the reproductive phase and was the major transcript (Fig.   3B,C). [score:5]
In Arabidopsis, 10 of the 16 SPL genes are targets of miR156 5, 20 and 11 of the 19 SPL genes in rice have been identified as a targets of miR156 [18]. [score:5]
Expression analyses of HvSPL3, 6, 13, and 23 in our study are aligned with the expression pattern of miR156 and miR172b during vegetative and reproductive phases suggesting the similar role of miR156-HvSPL-miR172b module in growth phase modifications in barley as observed in A. thaliana [38] and maize [61] (Figs  6A,B and S5). [score:5]
However, expression remained constant for variant 2 of HvSPL11 (SPL11 V2), which lacked a miR156 target site and was a minor transcript. [score:5]
The genomic and cDNA sequences of HvSPLs were analysed to predict the putative target sites of miR156 using psRNATarget tool (http://plantgrn. [score:5]
Earlier studies in A. thaliana indicated that floral transition was regulated by gibberellin guided miR156 -targeted SQUAMOSA PROMOTER BINDING-LIKE transcription factors [58]. [score:4]
Conserved Motif Identification, Cis-Regulatory Elements, miR156 Target Site Prediction and Alternative Splicing Event Analysis. [score:4]
Conserved Motif Identification, Cis-Regulatory Elements, miR156 Target Site Prediction and Alternative Splicing Event AnalysisA search for conserved motifs within HvSPL proteins was performed by using the MEME 4.11.0 tool (http://meme-suite. [score:4]
Yu Z-X Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156 -targeted SPL transcription factorsMol. [score:4]
Vegetative to Reproductive Phase in Barley: Expression of miR156, miR172 and Specific SPL GenesThe timing of juvenile to adult phase transition in A. thaliana is known to be regulated by miR156 and miR172, along with several members of the SPL family [38]. [score:4]
Most of the splice variants of miR156 -targeted HvSPLs exhibited miR156 complementary sites, implying the existence of alternate splicing -mediated regulation of biological processes in barley (Fig.   3, Table  S7). [score:4]
The expression pattern of miR156 family members and miR172b in barley vegetative to reproductive phase was also antagonistically related (Fig.   5A–C). [score:3]
Vegetative to Reproductive Phase in Barley: Expression of miR156, miR172 and Specific SPL Genes. [score:3]
The miR156 complementary sites are present in the coding region or in the 3′ un-translated region (3′-UTR). [score:3]
HvSPL genes that contain miR156 target sites are indicated by (*) asterisks. [score:3]
The miR156 target sites with the nucleotide positions of HvSPL transcripts are shown in green. [score:3]
Xu M Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thalianaPLoS Genet. [score:3]
In A. thaliana, 10 of 17 SPL genes are targeted by miR156, suggesting that miR156 complementary sites in SPL genes are conserved across plant species. [score:3]
Therefore, miR156 family in barley genome and its target site in HvSPLs was studied. [score:3]
Interestingly, differences in the miR156 target site among splice variants were also observed. [score:3]
Similarly, miR156 non -targeted (that is, lacking a miR156 binding site) HvSPLs also generated splice variants (1 to 20 numbers) of varying length. [score:3]
As expected, expression of miR156 family members was higher in 11-d-old seedlings stage (vegetative phase) and lower in 70–75 days old plants (reproductive phase). [score:3]
Data are expressed as RPM (reads per million) for the miR172 and miR156 members normalized to all miRNAs identified in the sample. [score:3]
Green colour denotes the mature sequence of miR156a/b/c and d. (C) miR156 target site in HvSPL3, 11, 13, 16, 17, 18 & 23 genes. [score:3]
We identified 4 members of miR156 family in barley and target prediction showed that 7 of the 17 SPL genes contained a complementary site for this miRNA (Fig.   2A–C; Table  S5). [score:3]
In case of HvSPL3 (20 splice variants), HvSPL11 (4 splice variants) and HvSPL17 (14 splice variants), only 15, 1 and 9 number of splice variants contained miR156 target site. [score:3]
Expression Analysis of Barley miR156 and miR172 Family Members. [score:3]
In addition, the expression patterns of SPL genes and of miR156 and miR172 from vegetative to reproductive phases revealed their possible functional relationships. [score:3]
Antagonistic expression pattern of miR156 and miR172b was observed during vegetative and reproductive phases of barley. [score:3]
Figure 5Barley miR172 sequences and expression analysis of miR156 and miR172 family members. [score:3]
The results of the current study revealed that the miR156/HvSPL/miR172 module functions as key molecular integrators that affected developmental phase transitions and spike development in barley. [score:3]
Putative miR156 binding sites were found for HvSPL3, HvSPL11, HvSPL16, HvSPL17, HvSPL18 and HvSPL23 in their coding regions and for HvSPL13 in the 3′UTR (Fig. 2C; Table  S5), suggesting that regulation by miR156 is restricted to this subset of HvSPL genes. [score:2]
Gou J The miR156-SPL4 module predominantly regulates aerial axillary bud formation and controls shoot architectureNew Phytol. [score:2]
Xie K Wu C Xiong L Genomic organization, differential expression, and interaction of SQUAMOSA promoter -binding-like transcription factors and microRNA156 in ricePlant Physiol. [score:2]
In bread wheat, it was found that the miR156-SPL module regulated bread wheat plant architecture by interacting with a strigolactone signalling repressor gene, DWARF53 [34]. [score:2]
MiR156 Family in H. vulgare and Their Target Site in HvSPL Genes. [score:2]
In A. thaliana, these phases are regulated by miR156 and miR172 [38] via SPL genes. [score:2]
The present study represents the first comprehensive analysis of the miR156/SPL/miR172 regulatory hub in barley. [score:2]
The timing of juvenile to adult phase transition in A. thaliana is known to be regulated by miR156 and miR172, along with several members of the SPL family [38]. [score:2]
Genetic modification of the miR156-SPL4 module controls aerial axillary bud formation, branching, biomass yield, and re-growth after cutting in switchgrass [36]. [score:1]
Two putative members of miR156 family, Hv-miR156a (accession number MI0016449) and Hv-miR156b (accession number MI0030546) were identified for barley in the miRbase database (http://www. [score:1]
The mature miR156 sequences of all four members were identical, but divergence was observed in the precursor sequences which showed 71 to 87% homology. [score:1]
All HvSPLs with miR156 binding sites were predicted to produce splice variants (4 to 20 numbers). [score:1]
* Asterisks denote the presence of the miR156 complementary sequence in the splice variants of barley SPL11 gene. [score:1]
pl?fam=MIPF0000008) and another two (Hv-miR156c and Hv-miR156d) were identified in the mirEX2.0 database (Fig. 2A, 2B). [score:1]
The miR156-complementary site was present in coding regions of HvSPL3, 11, 16, 17, 18, 23, and in the 3′UTR of HvSPL13. [score:1]
The respective transcripts of miR156 and miR172 has been shown in RPM (reads per million). [score:1]
[1 to 20 of 54 sentences]
3
[+] score: 108
For the sake of simplicity, we refer to 11 targets of miR156 and miR529 cooperative control as miR529 targets and we refer to the remaining 43 targets as miR156 targets. [score:9]
The differential regulation of SBP-box genes by two miRNA families provides an interesting example of the functions that these genes exhibit during land plant development; e. g., the low-level expression of SBP-box genes in an miR156-overexpression mutant prolonged the juvenile phase in maize [13] and Arabidopsis [14]. [score:7]
Meanwhile, a strong difference between Ka/Ks ratios for these two targets was also observed in Fig.   3. The miR156 targets had elevated Ka/Ks ratios, whereas miR529 targets had lower Ka/Ks ratios (Fig.   4c). [score:7]
Although we did not find evidence that miR156 and miR529 target all subgroup II-2 genes, the number of SBP-box genes targeted by miR156 is almost five times that of the number of genes cooperatively targeted by miR156 and miR529 (54 vs. [score:7]
Error bars indicate the standard error of the meanIn addition, our prediction suggested that 54 and 11 SBP-box genes in subgroup II-2 were separately targeted by the miR156 family and miR156/miR529 families, although not all SBP-box genes of subgroup II-2 were targeted by miR156 or the miR529 family. [score:5]
Among subgroup II-2 genes, miR156 targets evolve more rapidly than miR529 targets and experience comparatively relaxed purifying selection. [score:5]
Finally, our analyses led to the prediction of 54 SBP-box genes as the putative targets for miR156 and 11 SBP-box genes as the putative targets for miR529 (Fig.   1 and Additional file 4). [score:5]
Error bars indicate the standard error of the mean In addition, our prediction suggested that 54 and 11 SBP-box genes in subgroup II-2 were separately targeted by the miR156 family and miR156/miR529 families, although not all SBP-box genes of subgroup II-2 were targeted by miR156 or the miR529 family. [score:5]
Our previous work revealed that SBP-box genes targeted by miR156 evolve more rapidly and experience more relaxed purifying selection than genes targeted by both miR156 and miR529 [12]. [score:5]
Fig. 4Comparison of the mean Ks value (a), the mean Ka value (b) and the mean Ka/Ks ratios (c) for miR156 targets and miR529 targets. [score:5]
Therefore, we inferred that relaxed purifying selection might allow mutation at the miR156 binding sites and produce greater sequence diversity, which contributes to the increasing number of miR156 target genes. [score:4]
Our results indicated that miR156 targets had higher mean Ka and Ks values as compared to miR529 targets (Fig.   4a and b). [score:4]
Furthermore, one of our recent studies revealed that the miR156 family continually duplicates its gene copies, but retains conserved mature sequences, which would harmonize the regulation of increasing numbers of miR156 targets [23]. [score:4]
The genes marked by a single asterisk in the phylogenetic tree are regulated by miR156 and those marked by double asterisk are cooperatively regulated by both miR156 and miR529. [score:3]
In recent years, miR156/529 family members have been reported to target land plant SBP-box genes since these miRNA genes originated from land plants [12]. [score:3]
Prediction of miR156/miR529 target genes. [score:3]
Prediction of miR156/miR529 target genesApart from well-annotated genomes, these five species also have comprehensive miRNA information, in which miR156 and miR529 genes had been completely annotated using deep sequencing data. [score:3]
Taken together, the rapid expansion of subgroup II-2 genes and regulatory changes of miR156/529 on these genes could serve as new sources of functional diversity and confer phenotypic differences during development. [score:3]
However, we found that 11 SBP-box genes that are cooperatively controlled by miR156 and miR529 were in one subset of 54 miR156 putative targets. [score:3]
However, potential SBP-box targets controlled by miR156 and miR529 in these species were predicted when the miR529 genes from rice, maize and moss were used [23]. [score:3]
By contrast, subgroup II-2 genes evolve under relaxed purifying selection and have diversified through gene copy duplications and changes in miR156/529 regulation, which might contribute to morphological diversifications of land plants. [score:2]
For example, none of SBP-box genes were cooperatively regulated by miR156 and miR529 because there are no miR529 candidates found in core eudicots (i. e. Arabidopsis and poplar). [score:2]
Our previous results, together with evidence for a strong selective constraint against variations in binding sites cooperatively controlled by miR156 and miR529, provides evidence that the contraction of miR529 family members might lead to fewer SBP-box genes regulated by a combination of miR156/ miR529. [score:2]
Interestingly, subgroup II-1 genes have similar sequence and structural features to group I genes, whereas subgroup II-2 genes exhibit intrinsic differences on these features, including high copy numbers and the presence of miR156/ miR529 regulation. [score:2]
By contrast, subgroup II-2 genes experiencing comparatively relaxed purifying selection evolve more rapidly and have continually diversified through gene copy duplications and changes in miR156/529 regulation, which contributes to the morphological diversifications in land plants. [score:2]
All mature sequences of miR156 and miR529 genes were downloaded from miRBase release 21 [29]. [score:1]
They have characteristics of conserved genes: long protein sequences, a complex gene structure, lack of miR156/529 binding sites and nearly ubiquitous expression across different organs and tissues in distantly related plant species (Fig.   1, Table  1, and Additional file  1 and 2). [score:1]
Nevertheless, we found that some of subgroup II-2 SBP-box genes possessed a unique motif (motif 10), which is the responsive element of miR156 and miR529 (Additional file 1). [score:1]
We found that miR156/miR529 binding sites were present in subgroup II-2 SBP-box genes, but were not present in group I or subgroup II-1 genes (Additional file 1 and 4). [score:1]
Apart from well-annotated genomes, these five species also have comprehensive miRNA information, in which miR156 and miR529 genes had been completely annotated using deep sequencing data. [score:1]
[1 to 20 of 30 sentences]
4
[+] score: 100
Both Os SPL13 and Os SPL14 contain miR156 target sites, and OsSPL14 ortholog, SPL9 regulates miR172 expression positively in Arabidopsis (Wu et al. 2009). [score:6]
Expression patterns of Os SPLTo further confirm the hypothesis that GA functions independently of miR156 pathway in juvenile-adult phase change, I examined the expression levels of Os SPL13 and Os SPL14 that are the ortholog of Arabidopsis SPL3 and SPL9 (Xie et al. 2006). [score:5]
These results indicate that GA does not affect the expression of miR156- target genes. [score:5]
Expression patterns of miR156 and miR172 in d18-dy demonstrate that GA regulates juvenile-adult phase change independently of miR156-related pathway. [score:4]
Moreover, GA does not regulate Os SPL s that are the miR156-target genes. [score:4]
In Arabidopsis, overexpression of miR156 causes a prolonged juvenile phase (Wu and Poethig 2006). [score:3]
In addition, miR156 overexpressed mutant, Corngrass1 (Cg1) shows long juvenile phase in maize (Chuck et al. 2007). [score:3]
miR156 inhibits juvenile-adult phase change via repression of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family genes resulting in decrease of miR172 (Wu et al. 2009). [score:3]
To further confirm the hypothesis that GA functions independently of miR156 pathway in juvenile-adult phase change, I examined the expression levels of Os SPL13 and Os SPL14 that are the ortholog of Arabidopsis SPL3 and SPL9 (Xie et al. 2006). [score:3]
Double mutant of MIR156 over-expressed plant and GA deficient mutant might show persistent juvenile phase. [score:3]
The expression patterns of miR156 and miR172 were comparable between wild type and d18-dy plants. [score:3]
Subsequently I examined miR156 and miR172 expression levels in control and GA [3] treated plants. [score:3]
Over-expressed MIR156 line in Arabidopsis shows prolonged juvenile phase, however it can enter the reproductive phase (Schwarz et al. 2008). [score:3]
In both wild type and d18-dy leaves, expression level of miR156 was the highest in 2nd leaf, rapidly decreased to approximately one-third in 3rd leaf (Figure 3A), and was maintained at low level until the 7th leaf (Figure 3A). [score:3]
To quantify the miR156 and miR172 expression, PCR was performed using the TaqMan Fast Universal PCR Master Mix (Applied Biosystem). [score:3]
From normal expression patterns of two miRNAs and retarded juvenile-adult phase change in d18-dy, I estimated that GA promotes adult phase transition independently of miR156 and miR172. [score:3]
To demonstrate the relationship between GA and two miRNAs in juvenile-adult phase change, I examined miR156 and miR172 expression patterns in wild type and d18-dy leaves (Figure 3A,B). [score:3]
In rice, MIR156 over-expressed plant also showed dwarfism, but developed to flowering stage (Xie et al. 2012). [score:3]
For observing miR156, miR172, Os SPL s and GA2ox4 expression patterns in GA treated plants, sterilized seeds of wild type were plated on MS medium (Murashige and Skoog 1962) containing 10 [-5] M GA [3] (SIGMA). [score:3]
Because the expression level of SPL9 was similar in wild type and ga1-3 mutant in Arabidopsis (Wang et al. 2009), miR156 and GA related genes may function independently. [score:3]
MIR156 over-expressed plant had more leaves than wild type (Xie et al. 2012). [score:3]
GA and miR156 function independently to regulate juvenile-adult phase changeThe study of juvenile-adult phase change is difficult because it is accompanied by subtle morphological traits. [score:2]
In higher plants, miR156 and miR172 are also known as juvenile-adult phase change regulator. [score:2]
These results suggest that GA and miR156 regulate juvenile-adult phase change through independent genetic pathway. [score:2]
These indicate that miR156 and GA have different functions in regulation of plastochron. [score:2]
Our study demonstrated that GA does not regulate juvenile-adult phase change via a pathway of miR156. [score:2]
GA and miR156 function independently to regulate juvenile-adult phase change. [score:2]
Juvenile-adult phase change is regulated by miR156, miR172 and gibberellin (GA) in many higher plants (Lawson and poethig 1995; Telfer et al. 1997; Wu and Poethig 2006; Wang et al. 2011; Tanaka et al. 2011). [score:2]
Thus I concluded that GA did not regulate the onset of adult phase upstream of miR156. [score:2]
Thus, miR156 and miR172 are key regulators in the juvenile–adult phase change. [score:2]
However, miR156 and GA are reported as common juvenile-adult phase change regulator in many flowering plants (Lawson and Poethig 1995; Telfer et al. 1997; Wu et al. 2009; Chuck et al. 2007; Wang et al. 2011; Tanaka et al. 2011). [score:2]
I again confirmed that GA-related pathway did not act upstream of miR156. [score:1]
In addition, miR156 also controls juvenile-adult phase change in trees (Wang et al. 2011). [score:1]
However, the relationship between miR156 and GA in juvenile-adult phase change is not confirmative. [score:1]
There are a few reports that examine the relationship between miR156 and GA (Schwarz et al. 2008; Wang et al. 2009). [score:1]
In the early vegetative stage, transcription level of miR156 exceeds that of miR172, whereas in later vegetative stage, the inverse pattern is seen (Wu and Poethig 2006; Chuck et al. 2007). [score:1]
The observation of these mutants revealed that miR156 had significant roles in juvenile-adult phase change (Wu and Poethig 2006; Chuck et al. 2007; Wu et al. 2009). [score:1]
Gibberellin miR156 miR172 Os SPL s Juvenile and adult phases are distinguished by several morphological markers (Lawson and Poethig 1995; Telfer et al. 1997; Asai et al. 2002). [score:1]
These phenotypes indicate that miR156 functions redundantly with GA in the determination of the exact time of juvenile-adult phase change. [score:1]
[1 to 20 of 39 sentences]
5
[+] score: 99
While the majority of the grape SBP-box genes lacking a miR156/157 target site were expressed ubiquitously and constitutively, most genes bearing a miR156/157 target site exhibited distinct expression patterns, possibly due to the inhibitory role of the microRNA. [score:11]
Our experimental results, which were consistent with the expression patterns of miR156/157 -targeted genes in tomato and rice [21], [23], indicated that the miR156/157 -targeted grape SBP-box genes were generally expressed in a similar fashion to the VvmiR156f gene in all tissues tested (Fig. 6). [score:9]
Furthermore, the majority of these 12 grape SBP-box genes with miR156/157 target sites also exhibited the highest levels of expression in the early stages of fruit development, which gradually decreased or even vanished during the fruit ripening process. [score:6]
In general, the expression patterns of the 18 SBP-box genes could be classified into two types according to the presence or lack, of a miR156/157 target site (Fig. 6). [score:5]
In contrast to the grape SBP-box genes discussed above, Group 1 and Group 5 genes did not contain a miR156/157 target site and were all expressed ubiquitously and constitutively, with little or no variation in any of the tissues analyzed (Fig. 6). [score:5]
In the case of genes lacking a miR156/157 target site, including VvSBP4, VvSBP5, VvSBP6, VvSBP7, VvSBP14 and VvSBP17, there tended to be little or no variation in expression in any of the tissues tested. [score:5]
These results indicate that grape genes from these two groups may have functions that are distinct from the miR156/157 -targeted SBP-box genes in Groups 2, 3 and 4. Grape SBP-box Genes are Responsive to Abiotic and Biotic StressesTranscriptional control of stress-responsive genes is a crucial means by which plants respond to a range of abiotic and biotic stresses and research carried out in recent years has been productive in identifying transcription factors that are important for regulating these types of responses [60]. [score:4]
These results indicate that grape genes from these two groups may have functions that are distinct from the miR156/157 -targeted SBP-box genes in Groups 2, 3 and 4. Transcriptional control of stress-responsive genes is a crucial means by which plants respond to a range of abiotic and biotic stresses and research carried out in recent years has been productive in identifying transcription factors that are important for regulating these types of responses [60]. [score:4]
In contrast, genes containing a miR156/157 target site, including VvSBP1, VvSBP2, VvSBP3, VvSBP8, VvSBP9, VvSBP10, VvSBP11, VvSBP12, VvSBP13, VvSBP15, VvSBP16 and VvSBP18, were expressed at relatively higher levels in leaves, stems and tendrils compared to the reproductive tissues analyzed. [score:4]
Indeed, 12 of 18 grape SBP-box genes contained a miR156/157 target site in the V. vinifera genome (Fig. 1). [score:3]
The miR156/157 target sites are denoted by blue vertical lines. [score:3]
In rice, for instance, 11 of the 19 SBP-box genes have been revealed to be putative targets of OsmiR156 [21], while 10 of 15 SBP-box gene family members in tomato were found to carry putative miR156/ 157-response elements [23]. [score:3]
Interestingly, the miR156/157 -targeted SBP-like genes, including sequences from rice, Arabidopsis and grape, were distributed into only three of the subgroups (Groups 2, 3 and 4). [score:3]
Of the twelve grape SBP genes containing a miR156/157 target site, Group 4 members (with the exception of VvSBP4) bore this site within their 3′ UTRs (Fig. 3B), which is similar to AtSPL3, AtSPL4 and AtSPL5 in Arabidopsis. [score:3]
As a gene family encoding transcription factors, more than half of the SBP-box genes identified to date have been found to be targeted by miR156/ 157. [score:3]
To date, miR156/157 target sites were found in 10 Arabidopsis [57], 11 rice [21] and 10 tomato [23] SBP-box genes. [score:3]
In most cases, miR156/157-regulated SBP-box genes tend to play a role in the control of phase change and reproductive development [58], [59]. [score:3]
The three groups of SBP-box genes discussed above (Groups 2, 3, and 4), with the exception of SBP4, all contain a miR156/157 target site. [score:3]
Furthermore, both the locations of miR156/157 target sites and composition of encoded SBP domains were compared in each of the grape SBP genes to gain further insight into their evolutionary relationship with one another. [score:2]
59Schwab R (2012b) Roles of miR156 and miR172 in Reproductive Development. [score:2]
SBP-box genes from Arabidopsis, rice, tomato, and grape that contain complementary sequences for miR156/157 are marked with an asterisk. [score:1]
0059358.g001 Figure 1Alignment of miR156/157 complementary sequences within grape SBP genes. [score:1]
Chromosomal distribution of SBP and miR156 genes, as well as synteny of SBP-box genes in grape. [score:1]
Expansion Patterns and Distribution of Grape SBP and miR156 Genes in the Grape Genome. [score:1]
Expansion Patterns and Distribution of Grape SBP and miR156 Genes in the Grape GenomeAccording to available annotation information, the 18 grape SBP genes were dispersed on all grape chromosomes except for chromosomes 2, 3, 6, 9, 13 and 16. [score:1]
Alignment of miR156/157 complementary sequences within grape SBP genes. [score:1]
Although SBP-box genes have been identified in numerous plants including green algae, moss, silver birch, snapdragon, Arabidopsis, rice and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in grapevine. [score:1]
SBP-box genes that contained complementary sequences for miR156/157 are marked with an asterisk. [score:1]
Although grapevine (V. vinifera) is one of the most important perennial fruit crops worldwide, there is little information concerning SBP-box gene, or the corresponding miR156/157, function in this species [24]. [score:1]
SBP and miR156 genes are indicated by vertical orange and black lines, respectively. [score:1]
0059358.g004 Figure 4Chromosomal distribution of SBP and miR156 genes, as well as synteny of SBP-box genes in grape. [score:1]
In addition, in accordance with findings in other species, we also found that 12 of the 18 grape SBP genes identified in this study contained sequences that were complementary to miR156/157, with a maximum of one to three mismatches to the mature VvmiR156/157 sequences (Fig. 1). [score:1]
Previously, nine members of the miR156/157 family, termed VvmiR156a to VvmiR156i, which are highly conserved in plants and are thought to interact with numerous SBP-box genes, were identified in the V. vinifera genome [53]– [56]. [score:1]
This provides yet another example of the mutual relationship between miR156/157 and SBP-box genes. [score:1]
Eighteen SBP-box gene family members were identified in Vitis vinifera, twelve of which bore sequences that were complementary to miRNA156/157. [score:1]
[1 to 20 of 35 sentences]
6
[+] score: 83
In the dh mutant, miR156 expression was up-regulated and miR172 expression remained unchanged (Fig 6C), which is similar to the expression patterns of miR156 and miR172 found in the miR171 over -expressing barley [45]. [score:12]
The osa-miR171c -OsHAMs module negatively regulates phase change in riceOur findings suggested that osa-miR171c represses the juvenile—adult phase change in rice by regulating the expression of miR156, in addition, up-regulation of osa-miR171c caused the delayed vegetative phase transition traits, such as continuously produce of the leaf primordium (Fig 6B). [score:8]
The expression of these two miRNAs is negatively correlated; thus, miR156 is intensively expressed during the juvenile phase to control shoot development, while miR172 is strongly expressed during the adult phase. [score:8]
Our findings suggested that osa-miR171c represses the juvenile—adult phase change in rice by regulating the expression of miR156, in addition, up-regulation of osa-miR171c caused the delayed vegetative phase transition traits, such as continuously produce of the leaf primordium (Fig 6B). [score:7]
Firstly, up-regulation of osa-miR171c prolongs vegetative growth and delays the juvenile—adult phase transition by increasing the expression of miR156, similar to barley [45]. [score:6]
miR156 targets the SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) transcriptional factors, which control the transition from juvenile to flowering stage by regulating the expression of a class of MADS box genes [13, 16, 17]. [score:6]
In leaves of dh mutant 5-leaf stage seedlings, osa-miR156 expression level was higher than that in ZH11; however, osa-miR172 expression did not differ between them. [score:5]
Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. [score:5]
Recently, observations by Xue et al. [66] showed that the targets of miR156 and miR171 HAM-SPL can interact with each other to affect a series of developmental events, including flowering, by repressing SPL activity in Arabidopsis. [score:4]
The maize Cg1 mutant has been shown to extend juvenile phase through the over -expression of miR156 [14]. [score:3]
The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. [score:3]
In rice, the phenotype associated with the over -expression of miR156 is similar to that of dh mutant, delaying the heading date and increasing tiller numbers [68, 69]. [score:3]
Over -expression of miR156 prolongs the juvenile-phase, produces more tillers, delays flowering, and reduces the number of spikelet [14, 16, 18, 19]. [score:3]
To further understand the mechanism underlying the delay in the juvenile—adult phase transition, we used qRT-PCR to examine osa-miR156 and osa-miR172 expression (Fig 6C). [score:3]
In the leaf, miR171 delays juvenile—adult phase change mainly by regulating miR156. [score:2]
Genomic organization, differential expression, and interaction of SQUAMOSA promoter -binding-like transcription factors and microRNA156 in rice. [score:2]
miR156 and miR172 have been shown to play a critical role in the vegetative phase change in several plant species [13, 18]. [score:1]
miR156 has been demonstrated to be related with a delay in the juvenile-adult phase change [19]. [score:1]
Of them, miR156 and miR172 are well known for playing critical roles in the phase change of several species, including Arabidopsis [12, 13], maize [14] and rice [15]. [score:1]
[1 to 20 of 19 sentences]
7
[+] score: 68
Our work on targeted modification of miR156 target sites has shown that CRISPR/Cas9 is a powerful method for manipulating microRNA or its targets. [score:7]
To obtain a similar mutation by existing methods is difficult, and other methods such as antisense or RNAi suppression of miR156 may have additional effects, since miR156 may have multiple targets. [score:6]
Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. [score:5]
miR156, one of the most conserved and highly expressed microRNAs in plants, targets SQUAMOSA-promoter binding-like (SPL) transcription factor genes (Xie et al., 2006, 2012). [score:5]
Overexpression of miR156 in plants results in dramatic morphological alterations, e. g., dwarf or bushy architecture, reduction in seed or tuber yields, less nodulation, and delayed flowering, suggesting that miR156 has multiple regulatory roles in plant development (Xie et al., 2006; Chuck et al., 2007; Hultquist and Dorweiler, 2008; Wang et al., 2009; Wei et al., 2010; Bhogale et al., 2014; Stief et al., 2014; Wang Y. et al., 2015). [score:5]
Targeted deletion of either 12 or 21 bp from the IPA1 transcript region produced the IPA phenotype, by disrupting the miR156 target site while keeping the remaining codons in frame and thus maintaining protein activity. [score:5]
Ectopic expression of miR156 represses nodulation and causes morphological and developmental changes in Lotus japonicus. [score:4]
In the japonica line Shaoniejing (SNJ), one point mutation in the recognition site for miR156 perturbs IPA1 transcriptional cleavage and translational repression, leading to several traits including a decrease in tiller number, and increased plant height and panicle branching (Jiao et al., 2010). [score:4]
Targeted Mutation of the miR156 Site in IPA1 Produced Multiple Phenotypes. [score:4]
We also obtained many IPA1 mutants with frameshifts, which abolished IPA1 activity; these plants were dwarf and had more tillers, resembling the phenotype of plants over -expressing miR156 (Figure 4G). [score:3]
In our experiments, we obtained different phenotypes by mutating the miR156 target site in IPA1. [score:3]
For IPA1, we produced different phenotypes depending on whether we changed the miR156 target site in the IPA1 coding sequence or mutated the protein (Figures 4D–G). [score:3]
The mutant phenotype described above indicates that the ipa1 phenotype in rice may be achieved by directly knocking a pre-designed mutated miR156 recognition site into OsSPL14, rather than through time-consuming back-crossing from an ipa1 plant. [score:3]
Here we mutated the miR156 target site in IPA1 using CRISPR/Cas9, and we found a similar phenotype to that of ipa1 plants; sequencing the mutant lines revealed that they contain deletions of 12 and 21 base pairs, which disrupt the miR156 sites (Figure 4C), so that the IPA1 transcripts can survive attack by microRNA156, while deletion of amino acids in this region does not influence the activity of the IPA1 protein. [score:3]
Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. [score:2]
Genomic organization, differential expression, and interaction of SQUAMOSA promoter -binding-like transcription factors and microRNA156 in rice. [score:2]
Plants with IPA1 containing a mutation in the miR156 cleavage site, in Taichung Native 1 (an indica cultivar) and Aikawa and Shaoniejing (japonica cultivars), displayed the ideal plant architecture (IPA), which includes low tiller numbers, few unproductive tillers, more grains per panicle, and thick and sturdy stems, substantially enhancing rice grain yield (Jiao et al., 2010; Miura et al., 2010). [score:2]
MiR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. [score:1]
Feminized tassels of maize mop1 and ts1 mutants exhibit altered levels of miR156 and specific SBP-box genes. [score:1]
[1 to 20 of 19 sentences]
8
[+] score: 60
Over -expression of miR156 prolongs the expression of juvenile vegetative traits and delays flowering in both Arabidopsis and maize [18], whereas over -expression of miR172 in Arabidopsis accelerates flowering [8]. [score:7]
As shown in Figure 8, miR156 expression was markedly down-regulated during the floral transition and miR172 increased to higher levels after the lateral buds were differentiated (20 days after self-pruning) in the flowering-competent shoots (spring shoots of the MT). [score:6]
Constitutive expression of miR156 prolongs the expression of juvenile traits, whereas loss of miR156 activity eliminates these traits, demonstrating that miR156 is both necessary and sufficient for the juvenile phase [68], [69]. [score:5]
Several studies indicate that miRNA156/157 targets squamosa promoter binding protein (SPL) genes [23], [43], a plant-specific family of transcription factors involved in early flower development and vegetative phase changes [44]. [score:4]
For example, molecular genetic analyses of vegetative phase change in maize and Arabidopsis have since revealed that miR156 plays a particularly important role in this transition [17], [70], [71], miR156 is expressed at very high levels during the juvenile phase and declines in abundance during vegetative phase change. [score:3]
For 78 conserved miRNAs, four miRNA family reads (miR156, miR166, miR157, and miR167) occupied 79.47% of expressed miRNA reads on average (S2). [score:3]
More recently, Song et al. (2010a) analyzed miR172 and miR156 from trifoliate orange by RACE and verified their expression patterns. [score:3]
Several miRNAs, such as miR156 and miR172, have been shown to affect flowering time when over-expressed in Arabidopsis [8], [17]. [score:3]
Meanwhile, miR156 and miR172 were expressed in inverse patterns, consistent with previous reports on the two miRNAs. [score:3]
Of the other miRNAs, the Novel34 and Novel38 expression patterns were similar to that of miR156 and miR172, indicating that they may perform a similar role during the flowering process (Figure 8). [score:3]
The dynamic expression of miR156 and miR172 in flowering-competent and -incompetent shoots suggested that they were involved in the floral transition (Figure 8). [score:3]
In this study, miR156 and miR172 were expressed in inverse patterns: miR156 declined from juvenile to adult stage whereas miR172 increased during this same period, consistent with previous reports on the two miRNAs. [score:3]
However, in the flowering incompetent shoot (spring shoots of the WT), miR156 and miR172 were expressed in inverse patterns during self-pruning compared with the prior stage. [score:2]
These results suggested that miR156 and miR172 not only serves as a master regulator of vegetative phase change, but as a molecular marker for this process. [score:2]
Previous studies have shown that miR156 decreases during phase development in Arabidopsis [46], whereas miR172 increases [47], [48]. [score:2]
The fluctuation in miR156 and miR172 expression was quite significant compared with other miRNAs. [score:2]
In this study, the miR156/157/159 show significant down -expression from juvenile to adult in the MT compared with the WT, consistent with previous reports on the three miRNAs. [score:2]
Some highly conserved miRNA families such as miR156/157, miR167 and miR172 families were sequenced more than ten thousands or even one hundred thousands times. [score:1]
0043760.g003 Figure 3 (A) line 2–24 indicated novel miRNA from novel01 to Novel24; (B) line 2–24 indicated novel miRNA from novel25 to Novel50; (C) line 2–24 indicated novel miRNA from novel51 to Novel74; (D) line 2–6 indicated Novel75, Csi-miR156, Csi-miR172, miR396 and PtmiR93; NC indicated negative control; M indicated 100 bp. [score:1]
Csi-miR156, Csi-miR172 indicated Citrus sinensis conserved miRNAs; miR396 indicated other plants conserved miRNAs; PtmiR93 indicated known trifoliate orange-specific miRNAs; Novel17, Novel28, Novel29, Novel34, Novel38, Novel45, Novel56, and Novel68 indicated novel miRNAs. [score:1]
In addition, Wang et al. (2011) also elucidated the role of miR156 to decide the age of branch at different position and make sure the mature branch to produce the fruits [72]. [score:1]
[1 to 20 of 21 sentences]
9
[+] score: 47
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR396a, osa-MIR396b, osa-MIR398a, osa-MIR398b, osa-MIR156k, osa-MIR156l, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR390, osa-MIR535, osa-MIR169r, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, ppe-MIR482a, ppe-MIR482b, ppe-MIR171f, ppe-MIR482c, ppe-MIR171h, ppe-MIR171a, ppe-MIR171e, ppe-MIR169e, ppe-MIR398a, ppe-MIR171g, ppe-MIR171b, ppe-MIR482d, ppe-MIR482e, ppe-MIR171c, ppe-MIR398b, ppe-MIR156a, ppe-MIR156b, ppe-MIR156c, ppe-MIR156d, ppe-MIR156e, ppe-MIR156f, ppe-MIR156g, ppe-MIR156h, ppe-MIR156i, ppe-MIR160a, ppe-MIR160b, ppe-MIR162, ppe-MIR164a, ppe-MIR164b, ppe-MIR164c, ppe-MIR164d, ppe-MIR166a, ppe-MIR166b, ppe-MIR166c, ppe-MIR166d, ppe-MIR166e, ppe-MIR167a, ppe-MIR167b, ppe-MIR167c, ppe-MIR167d, ppe-MIR168, ppe-MIR169a, ppe-MIR169b, ppe-MIR169c, ppe-MIR169d, ppe-MIR169f, ppe-MIR169g, ppe-MIR169h, ppe-MIR169i, ppe-MIR169j, ppe-MIR169k, ppe-MIR169l, ppe-MIR171d, ppe-MIR172a, ppe-MIR172b, ppe-MIR172c, ppe-MIR172d, ppe-MIR390, ppe-MIR393a, ppe-MIR393b, ppe-MIR396a, ppe-MIR396b, ppe-MIR482f, ppe-MIR535a, ppe-MIR535b
miR156 targeted the SPL family gene CNR that was reported to be involved in fruit ripening [48, 49], and the overexpression of miR156 in tomatoes downregulated the weight and the number of fruit [50], miR172 targeted the ethylene-responsive TF APETALA2a, which negatively affects ethylene synthesis and positively affects fruit ripening. [score:10]
miR156 is known to target SQUAMOSA promoter binding protein–like (SPL) (Figure 3), but in our study, we found additional targets for miR156, including ATHB13, auxin-repressed protein (ARP), and inhibitor of growth protein 5 (ING5), suggesting that miR156 may have direct functions in modulating auxin response in the peach fruit. [score:8]
The expression levels of miR171, miR168, miR408a, miR398 and miR408b were significantly upregulated in mesocarp in NAA -treated samples compared to the control fruits, whereas those of miR156, miR160, miR166, miR167, miR390, miR393, miR482, miR535 and miR2118 were downregulated following NAA treatment. [score:8]
The results of real-time PCR experiments revealed the increased expression levels of miR171, miR168, miR408a, miR398 and miR408b, as well as the reduced expression levels of miR166, miR167, miR160, miR156, miR2118, miR535, miR390, miR482 and miR393 in the peach fruit after NAA treatment, respectively, suggesting the functional divergence of microRNAs in the regulation of fruit development. [score:7]
miR156 and miR172 particularly targeted the SPL family gene colorless non-ripening (CNR) and the ethylene-responsive transcription factor gene APETALA2a, respectively, whereas miR393 targeted the AFB homolog gene SlTIR1. [score:5]
In the meantime, APETALA2a is positively regulated by CNR, indicating a regulatory feedback loop between miR172 and miR156 during fruit development and ripening [21]. [score:4]
In the tomato fruit, miR156, miR172, miR393 and their targets were also detected [21]. [score:3]
Furthermore, we found that some miRNAs were also identified in the fleshy fruit of the tomato, including miR156, miR172 and miR393 [21]. [score:1]
We noted that miR156, miR172 and miR393 were also detected in tomatoes. [score:1]
[1 to 20 of 9 sentences]
10
[+] score: 46
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR171a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, osa-MIR390, osa-MIR444a, zma-MIR171d, zma-MIR171f, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR408a, zma-MIR156k, zma-MIR160f, osa-MIR528, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR1432, osa-MIR827, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR2275a, osa-MIR2275b, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR390a, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR408b, zma-MIR528a, zma-MIR528b, zma-MIR827, zma-MIR1432, zma-MIR390b, osa-MIR395x, osa-MIR395y, osa-MIR2275c, osa-MIR2275d, zma-MIR444a, osa-MIR6251
[58, 67, 68], most of them showed different expression patterns upon exposure to light (Additional file 14) except (a) miR156, miR166, miR172, which showed almost identical expression curves, and (b) miR171 and miR390, which showed shifted expression patterns. [score:7]
Though miR156, regulators of flowering time, phase changing modulation, later embryonic maturation and root development [76], together with miR168, regulators of stress responses and signal transductions in plant development [67], showed very similar expression patterns between maize and rice during de-etiolation (Additional file 14). [score:7]
For those miRNAs that showed similar expression patterns between maize and rice, i. e., miR156, miR166, miR168, miR172, miR2275 and miR528, GO enrichment analysis of their predicted targets was applied (Additional file 13). [score:5]
Xie K, Shen J, Hou X, Yao J, Li X, Xiao J, et al. Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. [score:5]
Analysis showed that two target genes of miR156 (GRMZM2G097275 and GRMZM2G126018) were reported to be putative positive Kranz regulators [47]. [score:4]
Based on our result, two putative positive Kranz regulators reported by Wang et al. (2010) were predicted as potential targets of miR156. [score:4]
Our results showed that two target genes of miR156 (GRMZM2G097275 and GRMZM2G126018) were reported to be putative positive Kranz regulators (Additional file 15). [score:4]
GO enrichment analysis for targets of miR156 in maize and rice Additional file 17. [score:3]
Considering that miR156 is a highly conserved miRNA across plant species [76], we conducted GO enrichment anlaysis of all the predicted 24 and 21 target genes for maize and rice miR156 respectively. [score:3]
miR156, miR160, miR164, miR166, miR167, miR171, miR172, and miR390, had been earlier reported to play evolutionarily conserved roles in plant development [54]. [score:2]
Among these 8 miRNAs, miR156, miR172 and miR408 are conserved miRNA families between maize and rice. [score:1]
Many of them, i. e., miR156, miR160, miR164, miR166, miR167, miR171, miR172 and miR390, were suggested to play highly evolutionary conserved roles across plant species [54]. [score:1]
[1 to 20 of 12 sentences]
11
[+] score: 46
Genes targeted by those differentially expressed miRNAs (i. e. miR156, miR164, miR167, miR397, miR1861, and miR1867) were recognized to play roles in multiple developmental and signaling pathways related to plant hormone homeostasis and starch accumulation. [score:6]
In the case of miR156, for example, OsSPLs are its targets that are under strict control by miR156 in the young panicles due to a predominant expression of miR156 in panicles. [score:5]
In our study, miR156 not only highly expressed in superior and inferior spikelets during rice grain filling, but also showed a dynamic expressional change along grain filling progresses. [score:5]
Heatmap shows the expressional levels [log2(normalized miRNA expression)] of different miRNA family members including miR156, miR159, miR164, miR167, miR397, miR1861, and miR1867 families in superior (S, on left part of the map) and inferior (I, on right part of the map) spikelets at different rice grain filling stages. [score:5]
More specifically, OsSPL14, targeted by miR156, controls shoot branching development at the vegetative growth stage, which forms the basis for generating ideal rice plant with increased lodging resistance and enhanced grain yield [23],[24]. [score:4]
OsSPL16, another miR156 target, encodes a protein that positively regulates cell proliferation. [score:4]
OsSPL16, another target of miR156, plays crucial roles in regulating grain size, shape and quality as well [25]. [score:4]
OsSPL14, a target of miR156, contributes to generating ideal rice plant architecture with a reduced tiller number, increased lodging resistance and enhanced grain yield [23],[24]. [score:3]
The differential expression patterns of miR156 have a strong correlation with the difference of grain filling rate (Figure  1A) between superior and inferior spikelets, suggesting a potential contribution of miR156 to the grain filling difference between superior and inferior spikelets. [score:3]
Over -expression of miR156 in rice resulted in severe dwarfism, significant reduction of panicle size, and flowering delay [45]. [score:3]
Specifically, miR156 is expressed higher at early grain filling stage (10–15 DAF), but lower at middle and later grain filling stage in superior than inferior spikelets (Figure  5, Additional file 2 and Additional file 3). [score:3]
For example, miR156 was revealed to play a key role in the establishment of rice architecture and grain size [23]–[25],[45]. [score:1]
[1 to 20 of 12 sentences]
12
[+] score: 45
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR528, osa-MIR535, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR820a, osa-MIR820b, osa-MIR820c, osa-MIR821a, osa-MIR821b, osa-MIR821c, osa-MIR1432, osa-MIR169r, osa-MIR1846d, osa-MIR1846a, osa-MIR1846b, osa-MIR1876, osa-MIR1846c, osa-MIR1846e, osa-MIR395x, osa-MIR395y
miR156-Overexpressing plants reported to have down-regulated expression of CYP724 and CYP90 (genes involved in brassinosteroid synthesis) and resulted in dwarfness, leaf erect and reduced panicle size in rice [53], indicating that reprogramming of development is a crucial step for plants to cope with low-N condition. [score:9]
Similarly, expression of genes of Ca [2+] transporting ATPase (miR1318 target), Os-SPL19-SBP box gene family member (miR156 target) and DNA methyltransferase (miR820 target) were higher in leaves of IC-547557 when compared with Vivek Dhan. [score:8]
To validate the microarray results of genome wide analysis, nine differentially expressed miRNAs from miR156, miR164, miR166, miR167, miR168, miR528, miR820, miR821 and miR1318 families were selected for the validation of their expression levels. [score:5]
Since an analysis of target genes of miR169 and miR167 family had already been evaluated in earlier studies [17], [30], we selected few target genes from miR156, miR164, miR168, miR528, miR820 and miR1318 families to observe the expression pattern in low-N tolerant (IC-547557) and low-N sensitive (Vivek Dhan) rice genotypes under nitrogen limited condition. [score:5]
Low level of expression of miR156 promotes adult phase development [49], [50]. [score:4]
OsSPL14/IPA1, one of miR156 target, has been reported as the regulator of panicle size [51], [52]. [score:4]
Of these differentially expressed miRNAs, six miRNAs (miR156, miR164, miR528, miR820, miR821 and miR1318) were reported in leaves and four (miR164, miR167, miR168 and miR528) in roots. [score:3]
Over -expression of miR156 promotes over-accumulation of anthocyanin (through SPL9) [54] causing redness and yellowing of leaves, a symptom associated to N-deficiency in plants [55]. [score:3]
Six miRNAs (miR156, miR164, miR528, miR820, miR821 and miR1318) showed differential expression in the leaves, when comparison was made between Vivek Dhan and IC-547557 genotypes of rice (Fig. 4A). [score:3]
These miRNAs belong to miR156, miR164, miR166, miR167, miR168, miR169, miR528, miR535, miR820, miR821, miR1318, miR1432, miR1846, miR1876, and miR2123 families. [score:1]
[1 to 20 of 10 sentences]
13
[+] score: 33
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR159a, ath-MIR160a, ath-MIR160b, ath-MIR160c, ath-MIR162a, ath-MIR162b, ath-MIR164a, ath-MIR164b, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR167a, ath-MIR167b, ath-MIR168a, ath-MIR168b, ath-MIR169a, ath-MIR172a, ath-MIR172b, ath-MIR159b, osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, ath-MIR167d, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169k, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR172c, ath-MIR172d, ath-MIR395a, ath-MIR395b, ath-MIR395c, ath-MIR395d, ath-MIR395e, ath-MIR395f, ath-MIR396a, ath-MIR396b, ath-MIR399a, ath-MIR399b, ath-MIR399c, ath-MIR399d, ath-MIR399e, ath-MIR399f, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, ath-MIR408, ath-MIR156g, ath-MIR156h, ath-MIR159c, ath-MIR164c, ath-MIR167c, ath-MIR172e, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR408, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR162, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, osa-MIR396e, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR396b, zma-MIR396a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171h, zma-MIR408a, zma-MIR156k, zma-MIR160f, osa-MIR529a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR529b, osa-MIR169r, osa-MIR396f, zma-MIR396c, zma-MIR396d, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR2275a, osa-MIR2275b, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, osa-MIR396g, osa-MIR396h, osa-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR408b, zma-MIR529, osa-MIR395x, osa-MIR395y, osa-MIR2275c, osa-MIR2275d, ath-MIR156i, ath-MIR156j
Beyond miR156 and miR172, miR164 targets genes encoding NAM proteins, and may be involved in regulating ear development (Table  3), similar to how miR164 is postulated to regulate NAC-domain targets in Arabidopsis [58]. [score:8]
Interestingly, some target transcripts were regulated by pairs of miRNAs: both miR156 and miR529 targeted five members of the same SBP family, and the miR159/319 pair regulated three MYB domain transcription factors. [score:7]
zma-miR156 targeted 13 unique genes including SPL genes and zma-miR529 targeted 18 unique genes including ZCN19 (a possible maize FT ortholog) (Table  3), indicating that these two families might play key roles in ear development [31, 54]. [score:6]
The six most abundantly expressed miRNA families were miR166, miR168, miR167, miR156, miR159, and miRs6. [score:3]
Among the conserved miRNA families, zma-miR156 and zma-miR529 had the highest number of gene targets. [score:3]
Previous studies showed that miR156 and miR172 function throughout flower development from the earliest stages (floral induction, stage I) to very late stages (floral organ cell-type specification, stage IV) [31- 34]. [score:2]
Figure 4 miR156 and miR172 in maize flower development (Adapted from Poethig (2009). [score:2]
Of these, 45 miRNAs aligned with 59 members of 21 maize miRNA families, while the others corresponded to members of miRNA families from three other plant species, including rice (osa-miR156/162/164/168/396/529) Arabidopsis (ath-miR156/164/167) and sorghum (sbi-miR396). [score:1]
The levels of miR156 and miR172 are conflicting during phase transition (Figure  4b). [score:1]
[1 to 20 of 9 sentences]
14
[+] score: 32
It has been reported similar saccharification improvement in switchgrass that over-express miRNA156, a strong inhibitor of the progression to flowering (Chuck et al., 2011). [score:5]
Weak miRNA156 over -expressing lines of switchgrass had better saccharification yield from starch than strongly expressing lines, probably because their growth was less impaired. [score:5]
In addition to CO and SPL/miRNA156, post-translational regulation of starch synthesis enzymes by reactive oxygen species (Lepisto et al., 2013) and T6P signaling through the stress integrating kinase SnRK1 regulate starch levels (Baena-González et al., 2007; Mattos Martins et al., 2013). [score:5]
In switchgrass, down-regulation of SPL3-5 by miRNA156 promotes late flowering and improvement of saccharification yield by both amylolytic and cellulolytic treatments, without modulation of CO/FT ortholog transcripts (Chuck et al., 2011), supporting the idea that CO and SPL/miRNA156 are parallel pathways in leaves that impact flowering time (Wahl et al., 2013). [score:4]
For example, in switchgrass engineered to over-express miRNA156, young nodes accumulated more starch than WT mature nodes (Chuck et al., 2011). [score:3]
Starch saccharification yield was increased by over -expressing miRNA156 (Chuck et al., 2011), a factor downstream of the trehalose-6-phosphate (T6P) carbon flux sensing machinery (Wahl et al., 2013). [score:3]
Overexpression of miRNA156 promoted starch accumulation in switchgrass but not in Arabidopsis, maize or tobacco (Chuck et al., 2011). [score:3]
The expression of all these transcripts was similar to that of WT plants suggesting independent activity from SPL/miRNA156. [score:3]
However, miRNA156 is a repressor of vegetative-reproductive transition through a CO parallel pathway that was recently shown to be connected to T6P (Wahl et al., 2013; Yang et al., 2013), a repressor of starch catabolism through KIN10 signaling (Baena-González et al., 2007; Delatte et al., 2011). [score:1]
[1 to 20 of 9 sentences]
15
[+] score: 30
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR162a, osa-MIR166c, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR393a, osa-MIR396c, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160f, osa-MIR164d, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR393b, osa-MIR172d, osa-MIR167j, osa-MIR419, osa-MIR390, osa-MIR444a, osa-MIR528, osa-MIR812a, osa-MIR812b, osa-MIR812c, osa-MIR812d, osa-MIR812e, osa-MIR818a, osa-MIR818b, osa-MIR818c, osa-MIR818d, osa-MIR818e, osa-MIR529b, osa-MIR1425, osa-MIR1429, osa-MIR1431, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR1436, osa-MIR1441, osa-MIR531b, osa-MIR1846d, osa-MIR1848, osa-MIR1850, osa-MIR1853, osa-MIR1860, osa-MIR812f, osa-MIR812g, osa-MIR812h, osa-MIR812i, osa-MIR812j, osa-MIR1319a, osa-MIR2096, osa-MIR2864, osa-MIR812k, osa-MIR812l, osa-MIR812m, osa-MIR3979, osa-MIR812n, osa-MIR812o, osa-MIR5161, osa-MIR5338, osa-MIR5512a, osa-MIR812p, osa-MIR812q, osa-MIR812r, osa-MIR812s, osa-MIR812t, osa-MIR812u, osa-MIR812v, osa-MIR1319b, osa-MIR5512b, osa-MIR818f
Studies in Arabidopsis [9], rice [10], [11], Ipomoea nil [12], and the early-flowering mutant of trifoliate orange [13] have shown that miRNAs, such as miR156 and miR172, regulate the expression of developmental factors involved in flowering. [score:5]
MiR156 and miR172 have inverse patterns of expression, miR156 declines while miR172 increases during the plant life cycle, and the miR156 target SPL9 promotes transcription of miR172b [15], [18]. [score:5]
The expression patterns for these miRNAs are similar, with the highest reads in CWR-V2, so they could have regulatory functions similar to miR156. [score:4]
A recent study has shown that miR172 acts downstream of miR156, and its expression is regulated by miR156. [score:4]
The regulation of this pathway is based on changes in the miR156 content, miR156 declines from the vegetative stage to the reproductive stage, but the levels of its targets, SPL (Squamosa Promoter Binding Protein Like) transcriptional factors, increase during the same period. [score:4]
The most highly expressed miRNA, the miR156 family, accounted for 42.4%, 64.1% and 66.9% of miRNAs in CWR-V1, CWR-V2, and CWR-F2, respectively. [score:3]
The miR156 family tops the list of conserved miRNAs, followed by the miR168, miR66, miR167 and miR528 families, the total expression of these families accounted for over 90% of the known miRNAs in the three libraries. [score:3]
SPL transcriptional factors are regulated by osa-miR529b, oru-miR49, oru-miR139, oru-miR234, and oru-miR270, in addition to osa-miR156. [score:2]
[1 to 20 of 8 sentences]
16
[+] score: 29
We also found that higher expression of OsSPL14 also resulted in the decreases in panicle branching (S11 Fig), suggesting that the up-regulation of miR156 could lead to different rice plant phenotypes: promote or repress panicle branching. [score:6]
Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. [score:5]
The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor is the direct targets of miR156 in various plant species [10, 11], which regulates flowering time, plastochron length, trichome patterning, tiller number and panicle branching [12– 16]. [score:5]
The over -expression of the miR156-insensitive ipa1 allele of the OsSPL14 gene led to an ideal plant architecture in rice by reducing the number of tillers per plant and increasing the number of grain per panicle [14, 15]. [score:3]
The sequential action of MIR156 and MIR172 regulates developmental timing in Arabidopsis. [score:3]
Temporal control of trichome distribution by microrna156 -targeted spl genes in Arabidopsis Thaliana. [score:2]
It has been shown that miR156 involves in many plant growth and developmental processes [10]. [score:2]
The miR156-SPL regulatory module will be useful for farmers and breeders to improve grain yield potential of rice over what is currently achievable. [score:2]
The miR156-SPL module has been suggested to be conserved in land plant evolution [15, 20– 22]. [score:1]
[1 to 20 of 9 sentences]
17
[+] score: 29
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR426, osa-MIR390, osa-MIR396e, osa-MIR528, osa-MIR530, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR810a, osa-MIR812a, osa-MIR812b, osa-MIR812c, osa-MIR812d, osa-MIR812e, osa-MIR820a, osa-MIR1423, osa-MIR1425, osa-MIR1432, osa-MIR169r, osa-MIR810b, osa-MIR1436, osa-MIR1441, osa-MIR1861a, osa-MIR1861b, osa-MIR1861c, osa-MIR1861d, osa-MIR1861e, osa-MIR1861f, osa-MIR1861g, osa-MIR1861h, osa-MIR1861i, osa-MIR1861j, osa-MIR1861k, osa-MIR1861l, osa-MIR1861m, osa-MIR1861n, osa-MIR1862a, osa-MIR1862b, osa-MIR1862c, osa-MIR812f, osa-MIR1873, osa-MIR1862d, osa-MIR1862e, osa-MIR812g, osa-MIR812h, osa-MIR812i, osa-MIR812j, osa-MIR827, osa-MIR396f, osa-MIR2873a, osa-MIR2878, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, osa-MIR812k, osa-MIR812l, osa-MIR812m, osa-MIR1862f, osa-MIR1862g, osa-MIR812n, osa-MIR812o, osa-MIR2873b, osa-MIR5071, osa-MIR5074, osa-MIR5075, osa-MIR5077, osa-MIR5080, osa-MIR5081, osa-MIR5144, osa-MIR812p, osa-MIR812q, osa-MIR812r, osa-MIR5795, osa-MIR812s, osa-MIR5802, osa-MIR812t, osa-MIR812u, osa-MIR5805, osa-MIR812v, osa-MIR5807, osa-MIR2873c, osa-MIR6253, osa-MIR1861o
Expression profiles from both studies clearly show consistency in identifying the highly expressed and lowly expressed members, especially for 10 conserved miRNA families (MIR156, MIR160, MIR162, MIR164, MIR166, MIR167, MIR168, MIR171, MIR172 and MIR396). [score:7]
Among them, 28 families are differentially expressed between both leaf and stem tissues while a few miRNA families (osa-MIR156, osa-MIR164 and osa-MIR827) are suggested to have tissue specificity in their differential expression. [score:5]
We also found that miRNA(s) from osa-MIR156 [miRBase:MIPF0000008] and osa-MIR827 [miRBase:MIPF0000726] was only differentially expressed in leaf while osa-MIR164 [miRBase:MIPF0000045] was differentially expressed in stem. [score:5]
Another highly expressed miRNA family, osa-MIR156 has over 12 miRNA members. [score:3]
For example, in our analysis, 11 out of 12 mature miRNAs in osa-MIR156 were leaf-specific in their differential expression under drought stress only in IR64. [score:3]
This observation is logical since miR156 is known to negatively regulate Squamosa promoter binding protein (SPB or SPL) family transcription factors that play an important roles in leaf development and vegetative phase change [48]. [score:3]
However when the results of both these studies were compared, only 5 miRNAs (miR156, miR159, miR169, miR172 and miR408) were found to be commonly regulated by drought stress. [score:1]
Of these, 7 miRNA families, namely miR156/157, miR160, miR159, miR319, miR165/166, miR390 and miR408 were found in primitive land plants such as Physcomitrella and Selaginella suggesting that they are highly conserved over wide evolutionary distance [14]. [score:1]
as high [transcripts per million (TPM) > 10000/100000; osa-MIR168, osa-MIR156, osa-MIR166], moderate (TPM = 100–10000; osa-MIR167, osa-MIR397, osa-MIR408, osa-MIR159, osa-MIR164, osa-MIR172, osa-MIR396) and low (TPM < 100; osa-MIR160, osa-MIR162, osa-MIR169, osa-MIR171, osa-MIR390, osa-MIR393, osa-MIR394, osa-MIR395, osa-MIR398, osa-MIR399, osa-MIR827). [score:1]
[1 to 20 of 9 sentences]
18
[+] score: 28
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR166a, osa-MIR166d, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR396e, osa-MIR530, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR818b, osa-MIR169r, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y
Additional file 8: Tabular data 2 shows that the candidate target genes were up- or down-regulated in an opposite manner to the change in miRNA expression, e. g., miR171f and its targets, Scarecrow-like 6 and the MORN motif containing protein, and miR156 and its target squamosa-promoter binding protein. [score:12]
Similarly, some members of the miR156, miR159, miR167 and miR169 families (pre-miR156b/i, pre-miR159b/f, pre-miR166a/b/c, pre-miR167b/g, pre-miR169f/p) were up-regulated while others (pre-miR156d/f/g/j, pre-miR159a, pre-miR166d, pre-miR167d/e, pre-miR169a/b/h/l/m/q) were down-regulated by drought stress. [score:7]
Several miRNAs have been reported to regulate drought-responsive genes [10, 15, 16], and it has been shown that rice miR159, miR169, miR395 and miR474 are drought-inducible, while the expression of miR156, miR168, miR170, miR172, miR396, miR397 and miR408 is suppressed by drought [13, 16]. [score:6]
Some miRNAs, such as miR819d, miR171f, miR156, miR530 and miR819i, have a large number of putative target genes. [score:3]
[1 to 20 of 4 sentences]
19
[+] score: 28
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR390, osa-MIR396e, gma-MIR156d, gma-MIR156e, gma-MIR156c, gma-MIR159a, gma-MIR160a, gma-MIR166a, gma-MIR166b, gma-MIR167a, gma-MIR167b, gma-MIR168a, gma-MIR172a, gma-MIR172b, gma-MIR319a, gma-MIR319b, gma-MIR156a, gma-MIR396a, gma-MIR396b, gma-MIR398a, gma-MIR398b, gma-MIR319c, gma-MIR156b, gma-MIR169a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR169r, gma-MIR159b, gma-MIR159c, gma-MIR162a, gma-MIR164a, gma-MIR167c, gma-MIR169b, gma-MIR169c, gma-MIR171a, gma-MIR390a, gma-MIR390b, gma-MIR393a, gma-MIR171b, gma-MIR482a, gma-MIR1507a, gma-MIR1508a, gma-MIR1509a, gma-MIR1510a, gma-MIR1511, gma-MIR1512a, gma-MIR1515a, osa-MIR827, osa-MIR396f, gma-MIR167d, gma-MIR396c, gma-MIR1507b, gma-MIR1510b, gma-MIR2109, gma-MIR167e, gma-MIR167f, gma-MIR172c, gma-MIR172d, gma-MIR172e, gma-MIR1509b, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, gma-MIR396d, gma-MIR482b, gma-MIR167g, gma-MIR156f, gma-MIR169d, gma-MIR172f, gma-MIR171c, gma-MIR169e, gma-MIR156g, gma-MIR159d, gma-MIR4416a, gma-MIR396e, gma-MIR156h, gma-MIR156i, gma-MIR160b, gma-MIR160c, gma-MIR160d, gma-MIR160e, gma-MIR162b, gma-MIR164b, gma-MIR164c, gma-MIR164d, gma-MIR166c, gma-MIR166d, gma-MIR166e, gma-MIR166f, gma-MIR166g, gma-MIR166h, gma-MIR168b, gma-MIR169f, gma-MIR169g, gma-MIR171d, gma-MIR171e, gma-MIR171f, gma-MIR171g, gma-MIR319d, gma-MIR319e, gma-MIR319f, gma-MIR390c, gma-MIR398c, gma-MIR408d, gma-MIR2118a, gma-MIR2118b, gma-MIR482c, gma-MIR1507c, gma-MIR171h, gma-MIR171i, gma-MIR169h, gma-MIR167h, gma-MIR169i, gma-MIR396f, gma-MIR396g, gma-MIR167i, gma-MIR171j, gma-MIR395a, gma-MIR395b, gma-MIR395c, gma-MIR397a, gma-MIR408a, gma-MIR408b, gma-MIR408c, gma-MIR156j, gma-MIR156k, gma-MIR156l, gma-MIR156m, gma-MIR156n, gma-MIR156o, gma-MIR159e, gma-MIR159f, gma-MIR162c, gma-MIR166i, gma-MIR166j, gma-MIR169j, gma-MIR169k, gma-MIR169l, gma-MIR169m, gma-MIR169n, gma-MIR171k, gma-MIR172g, gma-MIR172h, gma-MIR172i, gma-MIR172j, gma-MIR319g, gma-MIR319h, gma-MIR319i, gma-MIR319j, gma-MIR319k, gma-MIR319l, gma-MIR319m, gma-MIR396h, gma-MIR396i, gma-MIR482d, gma-MIR1512b, gma-MIR167j, gma-MIR171l, gma-MIR2111a, gma-MIR1512c, gma-MIR393b, gma-MIR399a, gma-MIR156p, gma-MIR171m, gma-MIR172k, gma-MIR171n, gma-MIR156q, gma-MIR171o, gma-MIR172l, gma-MIR169o, gma-MIR319n, gma-MIR171p, gma-MIR169p, gma-MIR156r, gma-MIR399b, gma-MIR396j, gma-MIR171q, gma-MIR156s, gma-MIR169r, gma-MIR169s, gma-MIR396k, gma-MIR2111b, gma-MIR2111c, gma-MIR166k, gma-MIR2111d, gma-MIR156t, gma-MIR482e, gma-MIR399c, gma-MIR171r, gma-MIR399d, gma-MIR399e, gma-MIR169t, gma-MIR171s, gma-MIR166l, gma-MIR171t, gma-MIR2111e, gma-MIR2111f, gma-MIR171u, gma-MIR399f, gma-MIR399g, gma-MIR395d, gma-MIR395e, gma-MIR395f, gma-MIR395g, gma-MIR166m, gma-MIR169u, gma-MIR399h, gma-MIR156u, gma-MIR156v, gma-MIR156w, gma-MIR156x, gma-MIR156y, gma-MIR156z, gma-MIR156aa, gma-MIR156ab, gma-MIR160f, gma-MIR164e, gma-MIR164f, gma-MIR164g, gma-MIR164h, gma-MIR164i, gma-MIR164j, gma-MIR164k, gma-MIR166n, gma-MIR166o, gma-MIR166p, gma-MIR166q, gma-MIR166r, gma-MIR166s, gma-MIR166t, gma-MIR166u, gma-MIR169v, gma-MIR390d, gma-MIR390e, gma-MIR390f, gma-MIR390g, gma-MIR393c, gma-MIR393d, gma-MIR393e, gma-MIR393f, gma-MIR393g, gma-MIR393h, gma-MIR393i, gma-MIR393j, gma-MIR393k, gma-MIR395h, gma-MIR395i, gma-MIR395j, gma-MIR395k, gma-MIR395l, gma-MIR395m, gma-MIR1515b, gma-MIR398d, gma-MIR319o, gma-MIR319p, gma-MIR399i, gma-MIR167k, gma-MIR319q, gma-MIR167l, gma-MIR399j, gma-MIR399k, gma-MIR169w, gma-MIR399l, gma-MIR399m, gma-MIR399n, gma-MIR399o
Over -expression of SPL3 and SPL9 stimulates flowering and over -expression of miR156 delays flowering via down-regulation of SPL activity [47]. [score:8]
For example, expression levels of miR156 family members ranged from 46 to 66744 TPM in leaves, and from 0.01 (actually 0, only for normalization) to 22303 TPM in roots, and expression levels of miR166 family members ranged from from 48 to 16705 TPM in leaves, and from 12 to 20693 TPM in roots (Table 3). [score:5]
In general, miRNAs that are conserved across plants, such as miR156, miR164, miR167 and miR169, target transcription factors (TFs), whereas less-conserved miRNAs target fewer TFs (Additional file 8). [score:5]
In this study, 16 SPL transcripts are targets for 14 miR156 family members (Additional file 7). [score:3]
The first to mention is the miR156 family, which is big and conserved across plants, including 12 miR156 members in both Arabidopsis and rice, 11 members in maize, and 8 in Medicago (http://www. [score:1]
MicroRNA chip experiments showed that eight miRNAs (miR156/157, miR167, miR168, miR319, miR159, miR894, miR1507, and miR1509) were induced by Pi starvation in soybean leaves, and seven miRNAs (miR159, miR894, miR1507, miR1509, miR396, miR474, and miR482) were induced in soybean roots by low P [31]. [score:1]
miR156_c1 means new soybean miR156 candidate 1, and so on in other miRNA families. [score:1]
In this study, no miR156 was found to be induced by low P in leaves or roots (Table 3). [score:1]
Here, the soybean miR156 family members have been expanded from 15 to 29 (Table 3). [score:1]
In Arabidopsis roots, miR156a, b, c, d, e, and f are moderately induced by P deficiency, and the ata-miR156 family is also induced by -N, -K [10]. [score:1]
This included most members of miR156, 164 and 167 families, along with 12 individual miRNAs (miR168, miR172b-3p, miR2118a, miR2118b, miR408c, miR1507a, miR1508d, miR1508e, miR1509a, miR1510b-5p, miR1510c, and miR1511) that were found in high abundance (>1000 TPM) in one or both of the HPL or LPL treatments (Tables 3, 4 and 5). [score:1]
[1 to 20 of 11 sentences]
20
[+] score: 26
The underlying mechanism is unknown, but it is possible that these two isoforms of miR156 are generated from different MIR156 genes, and are differentially regulated with distinct targets or cellular expression patterns, exerting distinct patterns of control on the expression of OsSPLs. [score:8]
A number of rice SQUAMOSA Promoter Binding Protein-Like (OsSPL) genes, including OsSPL14, are targeted by miR156; this pathway has a role in flowering time, panicle architecture, grain yield, and other developmental phenotypes (Xie et al., 2006; Jiao et al., 2010; Miura et al., 2010). [score:4]
Wu G Park MY Conway SR Wang JW Weigel D Poethig RS 2009 a The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. [score:3]
Similar to miR164 and miR172, a subset of miR156 targets showed an inverse correlation with miR156 (Fig. 2C). [score:3]
miR156 showed an interesting pattern across the developmental stages of rice spikelets: a 21-nt miR156 isoform increased gradually from stage 3 to stage 7, while the 20-nt miR156 firstly decreased from stage 3 to stage 5, and then increased at stage 7 (Fig. 2B). [score:2]
miRNAs, such as miR156 and miR172, have been proven to control flower development at a post-transcriptional level in both Arabidopsis and rice (Aukerman and Sakai, 2003; Chen, 2004; Xie et al., 2006; Wu et al., 2009 a; Zhu et al., 2009; Jiao et al., 2010; Lee and An, 2012). [score:2]
Therefore, studies of individual MIR156 genes would be important in the future to demonstrate how the miR156 family members differentially control spikelet or panicle development. [score:2]
We identified miRNAs with differential accumulation patterns during rice spikelet development, including conserved miRNAs (miR156, miR172, and miR164). [score:2]
[1 to 20 of 8 sentences]
21
[+] score: 26
Two microRNAs, miRNA156 and miRNA529, regulate IPA1 expression, and point mutations in the miRNA156 recognition site perturb miRNA156-regulated degradation of IPA1 mRNA, leading to decreased tiller number and increased plant height and panicle branches 45, 46, 47. [score:6]
In miRNA156 overexpressing (miR156OE) plants, the tillering number is dramatically increased (Supplementary information, Figure S6) and SPL genes including IPA1 are remarkably down-regulated 56, 57. [score:6]
These data suggest that IPA1 may be the common target of miRNA156 and the SL signaling pathway, and that the impairment of the SL signaling in miR156OE plants is probably due to the diminished expression of IPA1. [score:5]
The ipa1-10 mutant resulted from a 5-bp deletion in the coding sequence; the ipa1-11 mutant arose from a 57-bp insertion in the replacement of 102-bp deletion in the coding sequence; ipa1-3D and ipa1-4D were gain-of-function mutants resulting from 12-bp and 21-bp in-frame deletions in the miRNA156/529 target sites respectively (Supplementary information, Figure S2), which abolish the miRNA regulation without interfering the normal function of IPA1. [score:4]
Supplementary information, Figure S6 High tillering phenotype of miRNA156 -overexpressing transgenic plants. [score:3]
Cross talk between miRNA156 and the SL signaling pathway. [score:1]
IPA1 is post-transcriptionally controlled by miRNA156 and miRNA529 45, 46. [score:1]
[1 to 20 of 7 sentences]
22
[+] score: 24
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR164f, osa-MIR390, osa-MIR439a, osa-MIR439b, osa-MIR439c, osa-MIR439d, osa-MIR439e, osa-MIR439f, osa-MIR439g, osa-MIR439h, osa-MIR439i, osa-MIR396e, osa-MIR444a, tae-MIR159a, tae-MIR159b, tae-MIR160, tae-MIR164, tae-MIR167a, tae-MIR171a, tae-MIR399, tae-MIR408, tae-MIR444a, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, tae-MIR156, tae-MIR319, tae-MIR167b, tae-MIR169, tae-MIR444b, tae-MIR171b, tae-MIR396, tae-MIR167c, tae-MIR397
In Arabidopsis, miR156 was strongly expressed during seedling development and showed weak expression in mature tissues [28]. [score:6]
The expression patterns of miR156, miR159, miR164, and miR171, which are conserved miRNAs, were examined by (Figure 5). [score:3]
Rice miR156 showed similar expression profile to those found in Arabidopsis and wheat [51]. [score:3]
Twelve conserved miRNA families (miR156/157, miR159/319, miR160, miR164, miR165/166, miR167, miR169, miR170/171, miR172 and miR444) have been predicted to target 24 transcription factors, including squamosa promoter binding proteins, MYB, NAC1, homeodomain-leucine zipper protein, auxin response factor, CCAAT -binding protein, scarecrow-like protein, APETELA2 protein and MADS box protein (Additional data file 2). [score:3]
miRNA members of the miR156 family also showed variable expression. [score:3]
Expression of miR156 was higher in roots and flag leaves, but lower in other tissues tested, especially in spikes. [score:3]
MiR169 was represented by five members, miR156, miR165/166, miR167, miR170/171 and miR172 were represented by three members each, and miR159, miR319 and miR168 were represented by two members each in the library. [score:1]
Furthermore, our analysis revealed that the library included all known members of several miRNA families: miR156, miR159, miR167, miR169, miR168, miR171 and miR172. [score:1]
These include miRNA156/157, miR159, miR160, miR164, miR165/166, miR167, miR168, miR169, miR170/171, miR172, miR319, miR390, miR393, miR396, miR397, miR399 and miR408, which are conserved in diverse plant species (Table 2). [score:1]
[1 to 20 of 9 sentences]
23
[+] score: 23
Previous studies have reported that miR156 regulates the timing of flower formation through its target SPL3, which activates the expression of APETALA1 (Yamaguchi et al., 2009). [score:6]
In rice, it is well known that miR156 targets SBP-box gene family (SPL) proteins, which play important roles in the proper development of sporogenic tissues. [score:4]
In the present study, the low expression levels of miRNA156 found in WXS (S) might affect flower formation during pollen development. [score:4]
MiR171, miRNA156, and miRNA3979 interact with their respective target genes (ARDCP, SPL, and GRMP) to modulate phase transition. [score:3]
We also identified multiple targets for the miRNAs at the 3′ terminal, such as Nramp6 for miR156c-3p and OsFBDUF58 for miR160a-3p, etc. [score:3]
Of these, several members of the miR156 family showed significant differential expression levels in the four libraries (Table 2). [score:3]
[1 to 20 of 6 sentences]
24
[+] score: 22
In rice, miR156 genes are predominantly expressed in the young shoots, etiolated shoots, and seedling leaves (Xie et al. [2006]) and its target OsSPL genes are expressed high in young panicles (Xie et al. [2006]). [score:7]
Overexpression of the maize miR156 also causes increase of biomass and tiller number in maize and also in Arabidopsis, Brachypodium and switchgrass (Chuck et al. [2011]). [score:3]
Overexpression of miR156 OX causes various phenotypes such as increase of tiller numbers, late flowering, dwarfism, and decrease of spikelet numbers (Xie et al. [2006]). [score:3]
In maize, overexpression of the maize miR156 prevents flowering and increases starch content (Chuck et al. [2007]; [2011]). [score:3]
In Arabidopsis, miR156 targets 10 members (SPL2, SPL3, SPL4, SPL5, SPL6, SPL9, SPL10, SPL11, SPL13, and SPL15) of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family. [score:3]
miR156 plays roles in early vegetative stages, while miR172 functions later stages of develop (Aukerman and Sakai [2003]; Lauter et al. [2005]; Wu and Poethig [2006]; Chuck et al. [2007]; Poethig [2009]). [score:1]
miR172 and miR156 are involved in phase transition (Aukerman and Sakai [2003]; Lauter et al. [2005]; Wu and Poethig [2006]; Poethig [2009]). [score:1]
In plants, the miR172/ AP2 module is inversely correlated with the miR156/SPL module (Aukerman and Sakai [2003]; [2005]; Wu and Poethig [2006]; Chuck et al. [2007]; Poethig [2009]). [score:1]
[1 to 20 of 8 sentences]
25
[+] score: 22
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR393a, osa-MIR394, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR393b, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR396e, gma-MIR156d, gma-MIR156e, gma-MIR156c, gma-MIR159a, gma-MIR166a, gma-MIR166b, gma-MIR167a, gma-MIR167b, gma-MIR168a, gma-MIR172a, gma-MIR172b, gma-MIR156a, gma-MIR396a, gma-MIR396b, gma-MIR156b, gma-MIR169a, osa-MIR169r, gma-MIR159b, gma-MIR159c, gma-MIR162a, gma-MIR164a, gma-MIR167c, gma-MIR169b, gma-MIR169c, gma-MIR393a, gma-MIR482a, osa-MIR396f, gma-MIR167d, gma-MIR396c, gma-MIR167e, gma-MIR167f, gma-MIR172c, gma-MIR172d, gma-MIR172e, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR396g, osa-MIR396h, osa-MIR396d, ahy-MIR156a, ahy-MIR156b, ahy-MIR156c, ahy-MIR159, ahy-MIR167, ahy-MIR394, gma-MIR396d, gma-MIR482b, gma-MIR167g, gma-MIR156f, gma-MIR169d, gma-MIR172f, gma-MIR169e, gma-MIR394b, gma-MIR156g, gma-MIR159d, gma-MIR394a, gma-MIR396e, gma-MIR156h, gma-MIR156i, gma-MIR162b, gma-MIR164b, gma-MIR164c, gma-MIR164d, gma-MIR166c, gma-MIR166d, gma-MIR166e, gma-MIR166f, gma-MIR166g, gma-MIR166h, gma-MIR169f, gma-MIR169g, gma-MIR394c, gma-MIR2118a, gma-MIR2118b, gma-MIR482c, gma-MIR169h, gma-MIR167h, gma-MIR169i, gma-MIR396f, gma-MIR396g, gma-MIR167i, gma-MIR156j, gma-MIR156k, gma-MIR156l, gma-MIR156m, gma-MIR156n, gma-MIR156o, gma-MIR159e, gma-MIR159f, gma-MIR162c, gma-MIR166i, gma-MIR166j, gma-MIR169j, gma-MIR169k, gma-MIR169l, gma-MIR169m, gma-MIR169n, gma-MIR172g, gma-MIR172h, gma-MIR172i, gma-MIR172j, gma-MIR396h, gma-MIR396i, gma-MIR482d, gma-MIR167j, gma-MIR393b, gma-MIR156p, gma-MIR172k, gma-MIR156q, gma-MIR172l, gma-MIR169o, gma-MIR394d, gma-MIR169p, gma-MIR156r, gma-MIR396j, gma-MIR156s, gma-MIR169r, gma-MIR169s, gma-MIR396k, gma-MIR166k, gma-MIR156t, gma-MIR482e, gma-MIR394e, gma-MIR169t, gma-MIR166l, gma-MIR394f, gma-MIR166m, gma-MIR169u, gma-MIR156u, gma-MIR156v, gma-MIR156w, gma-MIR156x, gma-MIR156y, gma-MIR156z, gma-MIR156aa, gma-MIR156ab, gma-MIR164e, gma-MIR164f, gma-MIR164g, gma-MIR164h, gma-MIR164i, gma-MIR164j, gma-MIR164k, gma-MIR166n, gma-MIR166o, gma-MIR166p, gma-MIR166q, gma-MIR166r, gma-MIR166s, gma-MIR166t, gma-MIR166u, gma-MIR169v, gma-MIR393c, gma-MIR393d, gma-MIR393e, gma-MIR393f, gma-MIR393g, gma-MIR393h, gma-MIR393i, gma-MIR393j, gma-MIR393k, gma-MIR394g, gma-MIR167k, gma-MIR167l, gma-MIR169w
Aberrant expression of miR156 and miR172 in plants disrupts normal leaf and flower development. [score:4]
Compared with miR156 and miR172, the expression levels of miR157 and miR162 are moderate while the expression of miR396 is low. [score:4]
Based on the threshold cycle (C [T]), miR172 and miR156 were highly expressed with C [T ]values of 19.6 ± 3.5 and 20.5 ± 5.3, respectively. [score:3]
miR156 is involved in Arabidopsis leaf development by negatively regulating the Squamosa-promoter binding protein (SBP) [38, 42]. [score:3]
Other studies have shown that conserved miR172 and miR156 play very important roles in plant growth and development [41]. [score:2]
For example, miR156/157, miR159/319, miR166, miR169, and miR394 have been found in 51, 45, 41, 40, and 40 plant species, respectively [34, 38, 41]. [score:1]
In comparison to other plant species, tae-miR169b in wheat and osa-miR169 in rice were the most frequently sequenced miRNAs while miR156 in rice and wheat exhibited low abundance [46]. [score:1]
In this study, we adopted this technique to validate and measure the expression of 4 novel miRNAs (miRn1, miRn2 and miRn2*, miRn3, and miRn4) as well as 5 conserved miRNAs (miR156, miR157, miR162, miR172, and miR396). [score:1]
Of the 22 miRNA families, three miRNA families (miR156/157, miR166, and miR167) were predicted [34, 38, 41] using a comparative genomics -based strategy [38]. [score:1]
In this study, 5 conserved miRNAs (miR156, miR157, miR162, miR172, and miR396) and 4 peanut-specific miRNAs (miRn1, miRn2 and miRn2*, miRn3, and miRn4) were validated using qRT-PCR (Table 3). [score:1]
For example, the abundance of miR156 family varied from 4 read (ahy-miR156f) to 17,058 reads (ahy-miR156a) in the deep sequencing. [score:1]
[1 to 20 of 11 sentences]
26
[+] score: 22
The authors identified miRNAs whose expression is upregulated after HS and identified among them several MIR156 isoforms. [score:6]
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes are well-studied target genes of miR156 [34], and SPL2, SPL9, and SPL11 were identified as relevant in the context of HS memory [19]. [score:3]
Overexpression of MIR156 boosted HS memory, and depletion of miR156 compromised it. [score:3]
Expression of a miR156-resistant form of SPL2 and SPL11 compromised HS memory, indicating that the repression of SPL2 and SPL11 by HS is required for HS memory. [score:3]
Several target genes of miR156 whose transcript levels are reduced after HS were identified. [score:3]
To separate the two functions, miR156 levels were manipulated specifically after HS by using a heat-inducible promoter, and it was shown that the developmental effects are independent of the function during HS memory. [score:2]
Taken together, the AGO1-miR156-SPL module is important for plant development and also for HS memory. [score:2]
[1 to 20 of 7 sentences]
27
[+] score: 21
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR157a, ath-MIR157b, ath-MIR157c, ath-MIR157d, ath-MIR159a, ath-MIR160a, ath-MIR160b, ath-MIR160c, ath-MIR165a, ath-MIR165b, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR167a, ath-MIR167b, ath-MIR169a, ath-MIR172a, ath-MIR172b, ath-MIR159b, ath-MIR319a, ath-MIR319b, osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, ath-MIR167d, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169k, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR172c, ath-MIR172d, ath-MIR394a, ath-MIR394b, ath-MIR396a, ath-MIR396b, osa-MIR394, osa-MIR396a, osa-MIR396b, osa-MIR396c, ath-MIR403, ath-MIR408, ath-MIR156g, ath-MIR156h, ath-MIR159c, ath-MIR319c, ath-MIR167c, ath-MIR172e, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR408, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, ath-MIR414, osa-MIR414, osa-MIR396e, ath-MIR856, ath-MIR858a, osa-MIR169r, osa-MIR396f, ath-MIR2111a, ath-MIR2111b, osa-MIR396g, osa-MIR396h, osa-MIR396d, ath-MIR858b, ath-MIR156i, ath-MIR156j
It was found that target sites for conserved miRNAs in this plant were similar or functionally related to validated plant miRNA targets e. g. most members of the Squamosa Promoter Binding Protein Like (SPL) transcription factor family are targeted by miR156 in plants [8]. [score:7]
In stevia miR156 was among the lowly expressed miRNAs but usually miR156 represents one of the highly abundant miRNA families in diverse plant species e. g. Arachis hypogea[29], Brachypodium[27] and early maize seedlings [36]. [score:3]
For instance, miR156 targets 11 of the 17 SPL genes in Arabidopsis. [score:3]
Similarly, in stevia miR156 has been found to target SPL. [score:3]
miR156, miR159, miR167, miR319, miR396 and miR172 possessed 5, 8, 10, 8, 7 and 6 members respectively whereas other miRNA families such as miR157, miR160, miR169, miR858, miR894, miR2111 etc. [score:1]
Most of the miRNA families were found to be conserved in a variety of plant species e. g. using a comparative genomics based strategy homologs of miR319, miR156/157, miR169, miR165/166, miR394 and miR159 were found in 51,45,41,40,40 and 30 diverse plant species respectively [38]. [score:1]
This was also the case for some other miRNA families, such as miR156 (from 3 read to 124 reads) miR167 (from 13 reads to 9,637 reads) and miR394 (from 2 reads to 1,554 reads). [score:1]
In addition, miR167 and miR394 were found to have some thousands to tens of thousands of redundancies while miR319, miR166 and miR156 had more than one hundred redundancies. [score:1]
The abundance of miR172 was 20 times low as compared to miR156 in our dataset which is consistent with the previous finding that these two miRNAs are conversely regulated [36]. [score:1]
[1 to 20 of 9 sentences]
28
[+] score: 20
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR169a, osa-MIR171a, osa-MIR394, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR162b, osa-MIR166k, osa-MIR166l, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR166m, osa-MIR166j, osa-MIR414, osa-MIR437, osa-MIR390, osa-MIR440, osa-MIR396e, osa-MIR444a, osa-MIR528, osa-MIR529a, osa-MIR531a, osa-MIR529b, osa-MIR1425, osa-MIR1427, osa-MIR1432, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR1436, osa-MIR1439, osa-MIR531b, osa-MIR1846d, osa-MIR1848, osa-MIR1850, osa-MIR1846a, osa-MIR1846b, osa-MIR1859, osa-MIR1860, osa-MIR1862a, osa-MIR1862b, osa-MIR1862c, osa-MIR1863a, osa-MIR1864, osa-MIR1865, osa-MIR1871, osa-MIR1874, osa-MIR1862d, osa-MIR1876, osa-MIR1862e, osa-MIR1878, osa-MIR1879, osa-MIR1319a, osa-MIR1846c, osa-MIR2055, osa-MIR1846e, osa-MIR2096, osa-MIR396f, osa-MIR2106, osa-MIR2120, osa-MIR2275a, osa-MIR2275b, osa-MIR2863a, osa-MIR2863b, osa-MIR2872, osa-MIR2875, osa-MIR2876, osa-MIR2877, osa-MIR2878, osa-MIR1863c, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR1863b, osa-MIR1862f, osa-MIR1862g, osa-MIR3979, osa-MIR3981, osa-MIR5072, osa-MIR5073, osa-MIR5076, osa-MIR5079a, osa-MIR5082, osa-MIR5083, osa-MIR2863c, osa-MIR5150, osa-MIR5151, osa-MIR5155, osa-MIR5160, osa-MIR5161, osa-MIR5162, osa-MIR5484, osa-MIR5504, osa-MIR5505, osa-MIR5513, osa-MIR2275c, osa-MIR2275d, osa-MIR5788, osa-MIR5792, osa-MIR5809, osa-MIR5812, osa-MIR1319b, osa-MIR6246, osa-MIR6250, osa-MIR6253, osa-MIR5079b, osa-MIR531c
The up-regulated microRNAs in N22 shoot after LDS (in comparison with control) were osa-miR5083, osa-miR5504, osa-miR5160, osa-miR5072, osa-miR2055, and osa-miR1427, and the down-regulated miRNAs were osa-miR166, osa-miR5073, osa-miR156, and osa-miR390. [score:7]
The significantly up-regulated microRNAs in N22 root after LDS (in comparison with control) were osa-miR5504, osa-miR1427, osa-miR5083, osa-miR169e, osa-miR156, and osa-miR6250. [score:4]
The miR156 targets squamosa promoter binding protein-like (SPL) and dihydroflavonol-4-reductase (DFR) pathways to coordinate the relationship between development and abiotic stress tolerance in plants (Cui et al., 2014). [score:4]
miR156 promotes sustained expression of stress-responsive genes and is critical after high temperature stress adaptation to recurring heat stress in Arabidopsis (Stief et al., 2014). [score:3]
Our results indicate that miR156 and miR390 may be involved in acclimation or adaptation to long duration heat stress in rice, which needs to be confirmed in further studies. [score:1]
Recently it was shown that miR156 isoforms are highly induced after heat stress and are functionally important for heat stress memory. [score:1]
[1 to 20 of 6 sentences]
29
[+] score: 18
Expression of miR156d -targeted SPL genesIn rice, 11 of 19 SPL genes contain miR156 target sites 23. [score:7]
pBdt1-BDT1 and p35S-BDT1 plants exhibited morphological changes observed in plants that overexpressed miR156. [score:3]
Cg1 is a maize miR156 -overexpressing mutant caused by the insertion of a retrotransposon, STONER, 42 bp upstream of the TIS of tandem miR156b/c genes 21. [score:3]
In rice, 11 of 19 SPL genes contain miR156 target sites 23. [score:3]
The miR156 function is quantitative. [score:1]
In rice, the miR156 family consists of 12 members (a–l), and miR156 genes (a–j) produce the identical 20-nt mature miR156 25 26. [score:1]
[1 to 20 of 6 sentences]
30
[+] score: 18
However, both the 5p and 3p of miR-1320, -1432, and -172d were significantly up-regulated by RSV infection whereas osa-miR156c-3p, -156g-3p, -156j-3p, osa-miR167a-3p, -167e-3p, -167h-3p, -167i-3p, which have been thought to be miRNA*s and to be subject to degradation during miRNA biogenesis [39], accumulated to significantly higher levels in RSV-infected plants than their down-regulated counterparts. [score:7]
In this study all members of the miR156 family were consistently down-regulated 9–15 times after RSV infection, suggesting that this activity may be partially responsible for disease symptoms. [score:6]
Of the 13 down-regulated miRNAs in RSV infected plants, most (8 and 4 respectively) belong to the miR156 and 167 families, which are conserved across the plant kingdom and have numerous members [32, 40]. [score:4]
In previous studies, alteration of only one Osa-miR156 gene resulted in abnormal phenotypes [44– 46]. [score:1]
[1 to 20 of 4 sentences]
31
[+] score: 18
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR171a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR397b, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR528, osa-MIR531a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR812a, osa-MIR812b, osa-MIR812c, osa-MIR812d, osa-MIR812e, osa-MIR814b, osa-MIR1425, osa-MIR1432, osa-MIR444d, osa-MIR444f, osa-MIR531b, osa-MIR1847, osa-MIR1849, osa-MIR1850, osa-MIR1852, osa-MIR1846a, osa-MIR1846b, osa-MIR1868, osa-MIR812f, osa-MIR1875, osa-MIR812g, osa-MIR812h, osa-MIR812i, osa-MIR812j, osa-MIR1883a, osa-MIR1846e, osa-MIR2093, osa-MIR2865, osa-MIR395x, osa-MIR395y, osa-MIR812k, osa-MIR812l, osa-MIR812m, osa-MIR3980a, osa-MIR3980b, osa-MIR812n, osa-MIR812o, osa-MIR2873b, osa-MIR5074, osa-MIR2863c, osa-MIR5150, osa-MIR5485, osa-MIR5486, osa-MIR5487, osa-MIR5490, osa-MIR5491, osa-MIR5497, osa-MIR5499, osa-MIR5504, osa-MIR5505, osa-MIR5506, osa-MIR5516a, osa-MIR5519, osa-MIR5521, osa-MIR5528, osa-MIR5538, osa-MIR812p, osa-MIR812q, osa-MIR5791, osa-MIR5792, osa-MIR5793, osa-MIR812r, osa-MIR5797, osa-MIR812s, osa-MIR5800, osa-MIR812t, osa-MIR812u, osa-MIR5806, osa-MIR812v, osa-MIR5815, osa-MIR5817, osa-MIR5818, osa-MIR1319b, osa-MIR5179, osa-MIR5834, osa-MIR5836, osa-MIR5516b, osa-MIR6250, osa-MIR6253, osa-MIR531c
In our results, miR156l-5p, which was predicted to target six members (OsSPL2, OsSPL3, OsSPL11, OsSPL12, OsSPL13, and OsSPL19) of the SBP family, exhibited significant differential expression between ovules of Gui 99 and fsv1 at stage 1, suggesting a potential role of miR156 in the regulation of fertile female gametophyte formation. [score:6]
Previous studies have also shown that many miRNAs (such as miR156, miR160, miR164, miR166, and miR172) are associated with flower development by regulating expression of the transcription factor genes (Aukerman and Sakai 2003; Achard et al. 2004; Wu et al. 2006; Oh et al. 2008; Shikata et al. 2009; Luo et al. 2013). [score:5]
For example, SBP-box genes, which are targeted by miR156 or miR157, play a significant role in regulating the differentiation of the flower organ at the reproductive phase (Shikata et al. 2009; Yamaguchi et al. 2009). [score:4]
In tomato, miR156 mediates the cleavage of SBP-box genes which function as regulator of the normal development of gynoecia (Silva et al. 2014). [score:3]
[1 to 20 of 4 sentences]
32
[+] score: 15
Of the 21 common targets, most were conserved transcription factors for ancient miRNAs, including SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPLs) protein coding genes targeted by miR156/miR529, ARFs targeted by miR160, TCPs targeted by miR319, and MYBs targeted by miR159. [score:11]
The auxin signal affects rice root development through regulation of miR156-SPLs [46]. [score:3]
In particular, miR319, miR168, miR156, miR166, and miR159 were mapped with more than 10,000 reads (S1 Fig). [score:1]
[1 to 20 of 3 sentences]
33
[+] score: 14
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR396e, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR169r, osa-MIR827, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y
In Arabidopsis, miR156, miR158, miR159, miR165, miR167, miR168, miR169, miR171, miR319, miR393, miR394, miR396, and miR397 are up-regulated by salt stress while the expression of miR398 is down-regulated (Liu et al., 2008). [score:9]
The expression of miR156, miR159, miR160, miR166, miR168, miR169, miR393, and miR827 is increased, while miR172 is significantly repressed under heat stress in wheat (Xin et al., 2010). [score:3]
A great number of miRNAs, for example, miR396, miR168, miR167, miR165, miR319, miR159, miR394, miR156, miR393, miR171, miR158, and miR169 have been identified to be regulated by drought in Arabidopsis (Liu et al., 2008). [score:2]
[1 to 20 of 3 sentences]
34
[+] score: 14
Although the 3′ and central seed regions of miR156 overlap the targeted sites of miR529b, it is unlikely endogenous miR156 could effectively target the cloned miR529b target sequence due to the absence of target sequence complementary to the important 5′ seed region (Liu et al., 2014). [score:9]
While miR156 is highly conserved in land plants, the rice miR529b sequence was selected for optimisation of the assay because the miR529b miRNA is not endogenous to N. benthamiana, and therefore the results are not likely to be confounded by endogenous miRNA interaction with the target sequence. [score:2]
Evolutionary comparison of two combinatorial regulators of SBP-box genes, MiR156 and MiR529, in plants. [score:1]
Functional and evolutionary analyses of the miR156 and miR529 families in land plants. [score:1]
Rice miR529b is evolutionarily related to miR156 (Zhang et al., 2015; Morea et al., 2016). [score:1]
[1 to 20 of 5 sentences]
35
[+] score: 14
SBP transcription factors were only found to be targeted by novel miRNAs (ath-miR156g, bdi-miR156b-5p_R+1, sbi-miR156e_R+1_1ss14CT, bdi-miR156b-5p_L+1_1ss15TG) that show high sequence similarity to miR156 in Arabidopsis, Brachypodium distachyon, and Sorghum bicolor (Additional file 8), but have differences from the known members of miR156 family in rice. [score:3]
miR156 and miR172 function antagonistically in regulating developmental transitions in both monocots and dicots (Chuck et al., 2007; Wang et al., 2009, 2011; Wu et al., 2009; Huijser and Schmid, 2011). [score:3]
For example, abiotic stresses, drought and salinity, could induce the differential expression of a variety of miRNAs in different plant species, such as miR156, miR160, miR397, and miR402 (Sunkar and Zhu, 2004; Ding et al., 2009; Zhou et al., 2010; Kantar et al., 2011). [score:3]
The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. [score:3]
miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. [score:2]
[1 to 20 of 5 sentences]
36
[+] score: 13
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR159a, ath-MIR160a, ath-MIR160b, ath-MIR160c, ath-MIR162a, ath-MIR162b, ath-MIR164a, ath-MIR164b, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR167a, ath-MIR167b, ath-MIR169a, ath-MIR171a, ath-MIR172a, ath-MIR172b, ath-MIR159b, osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, ath-MIR167d, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169k, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR171b, ath-MIR171c, ath-MIR172c, ath-MIR172d, ath-MIR393a, ath-MIR393b, ath-MIR394a, ath-MIR394b, ath-MIR395a, ath-MIR395b, ath-MIR395c, ath-MIR395d, ath-MIR395e, ath-MIR395f, osa-MIR393a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, ath-MIR156g, ath-MIR156h, ath-MIR159c, ath-MIR164c, ath-MIR167c, ath-MIR172e, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR162, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR394a, zma-MIR394b, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR156k, zma-MIR160f, osa-MIR528, osa-MIR529a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, ath-MIR827, osa-MIR529b, osa-MIR1432, osa-MIR169r, osa-MIR827, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR2275a, osa-MIR2275b, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR482, zma-MIR528a, zma-MIR528b, zma-MIR529, zma-MIR827, zma-MIR1432, osa-MIR395x, osa-MIR395y, osa-MIR2275c, osa-MIR2275d, ath-MIR156i, ath-MIR156j
MiRNA156 has been shown to be involved in floral development and phase change by targeting members of squamosa promoter binding protein like (SPL) plant-specific transcription factors. [score:3]
Recent results indicated that overexpression of miR156 affects phase transition from vegetative growth to reproductive growth, including the quickly initiation of rosette leaves, a severe decrease in apical dominance, and a moderate delay in flowering [58]. [score:3]
Not only the miRNA166 and miRNA156 families were abundant during this stage of seed germination, but also they had more family members than other miRNA families, suggesting the importance of these two miRNA families at this very early stage of seed germination. [score:1]
The largest miRNA family size identified was miR166 that consisted of 14 members and miR156, miR169 and miR167 possessed 12, 12 and 10 members, respectively; whereas other miRNA families such as miR162, miR529, miR827 and miR1432 had only one member detected in this period. [score:1]
For example, miR156/157, miR159/319, miR166, miR169, and miR394 have been found in 51, 45, 41, 40 and 40 plant species, respectively [36- 38]. [score:1]
In comparison to other plant species, tae-miR169b in wheat and osa-miR169 in rice are the most frequently sequenced miRNAs while miR156 in rice and wheat exhibits low abundance [32]. [score:1]
For example, the abundance of miR156 family varied from 261 reads (zma-miR156j) to 409,637 reads (zma-miR156d) in the deep sequencing. [score:1]
In our datasets, miRNA166 showed the highest abundance followed by miRNA156 and miRNA528, respectively, during the very early stage of seed germination. [score:1]
The abundance of zma-miR172 was extremely low compared to that of zma-miR156 in our dataset, which was consistent with previous finding that these two miRNAs are conversely regulated. [score:1]
[1 to 20 of 9 sentences]
37
[+] score: 13
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR396e, gma-MIR156d, gma-MIR156e, gma-MIR156c, gma-MIR159a, gma-MIR160a, gma-MIR166a, gma-MIR166b, gma-MIR167a, gma-MIR167b, gma-MIR172a, gma-MIR172b, gma-MIR156a, gma-MIR396a, gma-MIR396b, gma-MIR156b, gma-MIR169a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR169r, gma-MIR159b, gma-MIR159c, gma-MIR162a, gma-MIR164a, gma-MIR167c, gma-MIR169b, gma-MIR169c, gma-MIR171a, gma-MIR171b, gma-MIR482a, sly-MIR160a, sly-MIR166a, sly-MIR166b, sly-MIR167a, sly-MIR169a, sly-MIR169b, sly-MIR169c, sly-MIR169d, sly-MIR171a, sly-MIR171b, sly-MIR171c, sly-MIR171d, sly-MIR395a, sly-MIR395b, sly-MIR156a, sly-MIR156b, sly-MIR156c, sly-MIR159, sly-MIR162, sly-MIR172a, sly-MIR172b, osa-MIR396f, gma-MIR167d, gma-MIR396c, mdm-MIR482a, gma-MIR167e, gma-MIR167f, gma-MIR172c, gma-MIR172d, gma-MIR172e, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, gma-MIR396d, gma-MIR482b, gma-MIR167g, gma-MIR156f, gma-MIR169d, gma-MIR172f, gma-MIR171c, gma-MIR169e, gma-MIR394b, gma-MIR156g, gma-MIR159d, gma-MIR394a, gma-MIR396e, gma-MIR156h, gma-MIR156i, gma-MIR160b, gma-MIR160c, gma-MIR160d, gma-MIR160e, gma-MIR162b, gma-MIR164b, gma-MIR164c, gma-MIR164d, gma-MIR166c, gma-MIR166d, gma-MIR166e, gma-MIR166f, gma-MIR166g, gma-MIR166h, gma-MIR169f, gma-MIR169g, gma-MIR171d, gma-MIR171e, gma-MIR171f, gma-MIR171g, gma-MIR394c, gma-MIR408d, gma-MIR482c, gma-MIR171h, gma-MIR171i, gma-MIR169h, gma-MIR167h, gma-MIR169i, gma-MIR396f, gma-MIR396g, gma-MIR167i, sly-MIR482e, sly-MIR482a, gma-MIR171j, gma-MIR395a, gma-MIR395b, gma-MIR395c, gma-MIR408a, gma-MIR408b, gma-MIR408c, gma-MIR156j, gma-MIR156k, gma-MIR156l, gma-MIR156m, gma-MIR156n, gma-MIR156o, gma-MIR159e, gma-MIR159f, gma-MIR162c, gma-MIR166i, gma-MIR166j, gma-MIR169j, gma-MIR169k, gma-MIR169l, gma-MIR169m, gma-MIR169n, gma-MIR171k, gma-MIR172g, gma-MIR172h, gma-MIR172i, gma-MIR172j, gma-MIR396h, gma-MIR396i, gma-MIR482d, gma-MIR167j, gma-MIR171l, gma-MIR156p, gma-MIR171m, gma-MIR172k, gma-MIR171n, gma-MIR156q, gma-MIR171o, gma-MIR172l, gma-MIR169o, gma-MIR171p, gma-MIR394d, gma-MIR169p, gma-MIR156r, gma-MIR396j, gma-MIR171q, gma-MIR156s, gma-MIR169r, gma-MIR169s, gma-MIR396k, gma-MIR166k, gma-MIR156t, gma-MIR482e, gma-MIR171r, gma-MIR394e, gma-MIR169t, gma-MIR171s, gma-MIR166l, gma-MIR171t, gma-MIR394f, gma-MIR171u, gma-MIR395d, gma-MIR395e, gma-MIR395f, gma-MIR395g, gma-MIR166m, gma-MIR169u, sly-MIR482b, sly-MIR482c, gma-MIR156u, gma-MIR156v, gma-MIR156w, gma-MIR156x, gma-MIR156y, gma-MIR156z, gma-MIR156aa, gma-MIR156ab, gma-MIR160f, gma-MIR164e, gma-MIR164f, gma-MIR164g, gma-MIR164h, gma-MIR164i, gma-MIR164j, gma-MIR164k, gma-MIR166n, gma-MIR166o, gma-MIR166p, gma-MIR166q, gma-MIR166r, gma-MIR166s, gma-MIR166t, gma-MIR166u, gma-MIR169v, gma-MIR394g, gma-MIR395h, gma-MIR395i, gma-MIR395j, gma-MIR395k, gma-MIR395l, gma-MIR395m, mdm-MIR156a, mdm-MIR156b, mdm-MIR156c, mdm-MIR156d, mdm-MIR156e, mdm-MIR156f, mdm-MIR156g, mdm-MIR156h, mdm-MIR156i, mdm-MIR156j, mdm-MIR156k, mdm-MIR156l, mdm-MIR156m, mdm-MIR156n, mdm-MIR156o, mdm-MIR156p, mdm-MIR156q, mdm-MIR156r, mdm-MIR156s, mdm-MIR156t, mdm-MIR156u, mdm-MIR156v, mdm-MIR156w, mdm-MIR156x, mdm-MIR156y, mdm-MIR156z, mdm-MIR156aa, mdm-MIR156ab, mdm-MIR156ac, mdm-MIR156ad, mdm-MIR156ae, mdm-MIR159a, mdm-MIR159b, mdm-MIR160a, mdm-MIR160b, mdm-MIR160c, mdm-MIR160d, mdm-MIR160e, mdm-MIR162a, mdm-MIR162b, mdm-MIR164a, mdm-MIR164b, mdm-MIR164c, mdm-MIR164d, mdm-MIR164e, mdm-MIR164f, mdm-MIR166a, mdm-MIR166b, mdm-MIR166c, mdm-MIR166d, mdm-MIR166e, mdm-MIR166f, mdm-MIR166g, mdm-MIR166h, mdm-MIR166i, mdm-MIR167a, mdm-MIR167b, mdm-MIR167c, mdm-MIR167d, mdm-MIR167e, mdm-MIR167f, mdm-MIR167g, mdm-MIR167h, mdm-MIR167i, mdm-MIR167j, mdm-MIR169a, mdm-MIR169b, mdm-MIR169c, mdm-MIR169d, mdm-MIR171a, mdm-MIR171b, mdm-MIR171c, mdm-MIR171d, mdm-MIR171e, mdm-MIR171f, mdm-MIR171g, mdm-MIR171h, mdm-MIR171i, mdm-MIR171j, mdm-MIR171k, mdm-MIR171l, mdm-MIR171m, mdm-MIR171n, mdm-MIR172a, mdm-MIR172b, mdm-MIR172c, mdm-MIR172d, mdm-MIR172e, mdm-MIR172f, mdm-MIR172g, mdm-MIR172h, mdm-MIR172i, mdm-MIR172j, mdm-MIR172k, mdm-MIR172l, mdm-MIR172m, mdm-MIR172n, mdm-MIR172o, mdm-MIR394a, mdm-MIR394b, mdm-MIR395a, mdm-MIR395b, mdm-MIR395c, mdm-MIR395d, mdm-MIR395e, mdm-MIR395f, mdm-MIR395g, mdm-MIR395h, mdm-MIR395i, mdm-MIR396a, mdm-MIR396b, mdm-MIR396c, mdm-MIR396d, mdm-MIR396e, mdm-MIR396f, mdm-MIR396g, mdm-MIR408a, mdm-MIR482b, mdm-MIR482c, mdm-MIR408b, mdm-MIR408c, mdm-MIR408d, mdm-MIR482d, mdm-MIR159c, mdm-MIR171o, mdm-MIR169e, mdm-MIR169f, sly-MIR164a, sly-MIR164b, sly-MIR394, sly-MIR166c, sly-MIR156d, sly-MIR156e, sly-MIR396a, sly-MIR167b, sly-MIR482d, sly-MIR169e, sly-MIR396b, sly-MIR171e, gma-MIR167k, gma-MIR167l, gma-MIR169w, sly-MIR172c, sly-MIR408, sly-MIR172d, sly-MIR169f, sly-MIR171f, mdm-MIR159d, mdm-MIR159e, mdm-MIR159f, mdm-MIR166j, mdm-MIR395j, mdm-MIR169g, mdm-MIR169h, mdm-MIR169i, mdm-MIR169j, mdm-MIR171p, mdm-MIR395k, mdm-MIR171q, mdm-MIR169k, mdm-MIR169l, mdm-MIR169m, mdm-MIR169n, mdm-MIR172p, mdm-MIR395l, mdm-MIR169o
However, miRNA156, miRNA159 and miR172 targeted more than one gene family. [score:3]
Within the miR156 family, sequence alignments showed that miR156e/j, miR156f/i, miR156a/g, miR156c/h, and miR156k/l had high similarity, and the 12 miRNAs could be divided into five groups based on multiple sequence alignments (Figure 3A–B and Figure S1). [score:1]
Alignment of multiple sequences and phylogenic analysis of microRNA156 pre-miRNAs in date palm. [score:1]
B) Phylogenic tree (formed by Neighbor Joining) for miRNA in the miR156 family. [score:1]
0071435.g003 Figure 3 A) Alignment of twelve pre-miRNA sequences of miR156. [score:1]
A) Alignment of twelve pre-miRNA sequences of miR156. [score:1]
As shown in Table 1, the most abundant miRNA family was miR156/157 (12 loci), which has been identified in 45 plant species and which had an average copy number about 18 in the seven other well-studied plant genomes analyzed (Table S2). [score:1]
C) Blast2 results for two pairs of paralogous date palm contigs containing pre-miR156. [score:1]
Further sequence comparison between date palm contigs containing miR156 showed that four pairs of miRNAs (miR156e/j, miR156f/i, miR156a/g, and miR156c/h) had highly similar flanking sequences (Table 2). [score:1]
These thirteen conserved pre-miRNAs belonged to the miR156 (6), miR159 (4), miR160 (2) and miR170 (1) families. [score:1]
These duplicated regions included miRNAs from all 21 families, and duplication on family miR156 duplicated was detected in all four species. [score:1]
[1 to 20 of 11 sentences]
38
[+] score: 12
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, osa-MIR396e, zma-MIR396b, zma-MIR396a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR156k, zma-MIR160f, tae-MIR159a, tae-MIR159b, tae-MIR160, tae-MIR164, tae-MIR167a, tae-MIR1127a, osa-MIR169r, osa-MIR396f, zma-MIR396c, zma-MIR396d, osa-MIR2275a, osa-MIR2275b, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, osa-MIR396g, osa-MIR396h, osa-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR397a, zma-MIR397b, zma-MIR398a, zma-MIR398b, hvu-MIR156a, tae-MIR156, hvu-MIR159b, hvu-MIR159a, hvu-MIR166a, tae-MIR167b, hvu-MIR168, hvu-MIR169, tae-MIR169, hvu-MIR397a, tae-MIR398, tae-MIR171b, hvu-MIR166b, hvu-MIR166c, osa-MIR2275c, osa-MIR2275d, tae-MIR1122b, tae-MIR9653a, tae-MIR9654a, tae-MIR9656, tae-MIR9657a, tae-MIR9659, tae-MIR9660, tae-MIR1127b, tae-MIR9661, tae-MIR396, tae-MIR9665, tae-MIR2275, tae-MIR9667, tae-MIR167c, tae-MIR1120b, tae-MIR397, tae-MIR1130b, tae-MIR5384, tae-MIR9675, tae-MIR1120c, tae-MIR9679, tae-MIR9657b, hvu-MIR397b, hvu-MIR156b, tae-MIR9653b
miR156 targets squamosa promoter -binding protein-like 10 (SPL10) and SPL11, and the regulation of these targets prevents premature gene expression during early embryogenesis [19]. [score:8]
Of the 15 known miRNA families, 8 (miR396, miR168, miR156, miR172, miR159, miR398, miR1318 and miR167) showed different levels of preferential expression in wheat flag leaves, with the logarithm of the fold changes ranged from 0.5 to 5.2 as well as more than those in the developing seeds (Figure  3a, Table  2). [score:3]
The highest read abundance (approximately 238,000 RPM) was detected in the miR168 family and was 3.8 to 78 times more abundant than the other miRNA families, including miR156, miR166, miR167 and miR172, whose abundance ranged from about 2,900 RPM to 62,000 RPM (Table  2). [score:1]
[1 to 20 of 3 sentences]
39
[+] score: 12
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, gma-MIR156d, gma-MIR156e, gma-MIR156c, gma-MIR159a, gma-MIR160a, gma-MIR166a, gma-MIR166b, gma-MIR167a, gma-MIR167b, gma-MIR172a, gma-MIR172b, gma-MIR156a, gma-MIR156b, gma-MIR169a, osa-MIR169r, gma-MIR159b, gma-MIR159c, gma-MIR164a, gma-MIR167c, gma-MIR169b, gma-MIR169c, gma-MIR1520d, gma-MIR1520a, gma-MIR1520b, gma-MIR1520c, gma-MIR167d, gma-MIR167e, gma-MIR167f, gma-MIR172c, gma-MIR172d, gma-MIR172e, gma-MIR1520e, gma-MIR1520f, gma-MIR1520g, gma-MIR1520h, gma-MIR1520i, gma-MIR1520j, gma-MIR1520k, gma-MIR1520l, gma-MIR1520m, gma-MIR1520n, gma-MIR1520o, gma-MIR167g, gma-MIR1520r, gma-MIR156f, gma-MIR1520p, gma-MIR4406, gma-MIR169d, gma-MIR1520q, gma-MIR172f, gma-MIR169e, gma-MIR156g, gma-MIR159d, gma-MIR156h, gma-MIR156i, gma-MIR160b, gma-MIR160c, gma-MIR160d, gma-MIR160e, gma-MIR164b, gma-MIR164c, gma-MIR164d, gma-MIR166c, gma-MIR166d, gma-MIR166e, gma-MIR166f, gma-MIR166g, gma-MIR166h, gma-MIR169f, gma-MIR169g, gma-MIR169h, gma-MIR167h, gma-MIR169i, gma-MIR167i, gma-MIR156j, gma-MIR156k, gma-MIR156l, gma-MIR156m, gma-MIR156n, gma-MIR156o, gma-MIR159e, gma-MIR159f, gma-MIR166i, gma-MIR166j, gma-MIR169j, gma-MIR169k, gma-MIR169l, gma-MIR169m, gma-MIR169n, gma-MIR172g, gma-MIR172h, gma-MIR172i, gma-MIR172j, gma-MIR167j, gma-MIR156p, gma-MIR172k, gma-MIR156q, gma-MIR172l, gma-MIR169o, gma-MIR169p, gma-MIR156r, gma-MIR156s, gma-MIR169r, gma-MIR169s, gma-MIR166k, gma-MIR156t, gma-MIR169t, gma-MIR166l, gma-MIR166m, gma-MIR169u, gma-MIR156u, gma-MIR156v, gma-MIR156w, gma-MIR156x, gma-MIR156y, gma-MIR156z, gma-MIR156aa, gma-MIR156ab, gma-MIR160f, gma-MIR164e, gma-MIR164f, gma-MIR164g, gma-MIR164h, gma-MIR164i, gma-MIR164j, gma-MIR164k, gma-MIR166n, gma-MIR166o, gma-MIR166p, gma-MIR166q, gma-MIR166r, gma-MIR166s, gma-MIR166t, gma-MIR166u, gma-MIR169v, gma-MIR167k, gma-MIR167l, gma-MIR169w
In Arabidopsis, rice and in some other plants, miR156 regulates leaf development by targeting Squamosa-Promoter Binding protein-like (SBP) transcription factors [31, 39]. [score:5]
In this study, we detected a number of MYB family transcription factors regulated by gma-miR159 (Additional file 1. The gma-miRNA156 family members target sites in numerous proteins containing the Squamosa Promoter Binding (SBP) domain. [score:4]
Inspection of small RNA sequencing data from seed coats and cotyledons of Williams [27] shows the presence of various miRNA family members for gma-miR156, 159, 160, 164, 166, and 167, thus confirming that these miRNAs are present during seed development. [score:2]
From inspection of sequenced small RNA populations from the 50–75 mg seed coats and cotyledons of Williams [27], we find only a few occurrences of the miR172 family (less than 30 occurrences per million reads) while some family members of the miR156 family are highly abundant (99,000 per million) in the cotyledons. [score:1]
[1 to 20 of 4 sentences]
40
[+] score: 11
Moreover, the rice yield-related gene OsSPL14, which is highly expressed in the reproductive stage and promotes panicle branching and higher grain yield, can be suppressed through excision by miR156 in Nipponbare (5). [score:5]
Furthermore, the previous study revealed that miR156 is involved in panicle number regulation through targeting OsSPL14 (5). [score:4]
For example, miR172, miR397 and miR156 that were previously discovered to associate with certain agronomic traits could also be identified in this database. [score:1]
By using the parameters we set (k-mean: 5; sample: all; default data pretreatment; and ANOVA), miR156 was identified as one of the significant miRNAs associated with the panicle number (Supplementary Materials 2.2). [score:1]
[1 to 20 of 4 sentences]
41
[+] score: 11
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR408, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR444a, osa-MIR528, osa-MIR530, osa-MIR531a, osa-MIR535, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR812a, osa-MIR812b, osa-MIR812c, osa-MIR812d, osa-MIR812e, osa-MIR1429, osa-MIR1431, osa-MIR1432, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR531b, osa-MIR1857, osa-MIR1862a, osa-MIR1862b, osa-MIR1862c, osa-MIR812f, osa-MIR1862d, osa-MIR1862e, osa-MIR812g, osa-MIR812h, osa-MIR812i, osa-MIR812j, osa-MIR1883a, osa-MIR1883b, osa-MIR1320, osa-MIR827, osa-MIR1846e, osa-MIR2121a, osa-MIR2864, osa-MIR395x, osa-MIR395y, osa-MIR812k, osa-MIR812l, osa-MIR812m, osa-MIR1862f, osa-MIR1862g, osa-MIR3979, osa-MIR3980a, osa-MIR3980b, osa-MIR812n, osa-MIR812o, osa-MIR5083, osa-MIR5143a, osa-MIR5156, osa-MIR5513, osa-MIR812p, osa-MIR812q, osa-MIR812r, osa-MIR812s, osa-MIR812t, osa-MIR812u, osa-MIR812v, osa-MIR6248, osa-MIR6249a, osa-MIR531c
The target genes of miR156, miR159, miR169, and miR172 are categorized into different transcription factor families – SBP, MYB, CBF, bZIP – which further regulate gene expression and signal transduction and probably play roles in stress responses [35]. [score:6]
Members of the miR156 family target the SBP-LIKE and MYBs/TCPs transcription factors. [score:3]
miR156b-3p/c-3p/f-3p/g-3p/h-3p/l-3p were down-regulated in P15 when attacked by BPH, suggesting that miR156 may be involved in the adaption to BPH attack by modulating the plant morphological characteristics. [score:2]
[1 to 20 of 3 sentences]
42
[+] score: 10
miR172 was first reported to regulate floral organ development by negatively regulating the AP2 gene at the post-translation level in Arabidopsis (Chen, 2004), and miR172 could cooperate with miR156 to regulate flowering time sequentially (Wu et al., 2009). [score:7]
The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. [score:3]
[1 to 20 of 2 sentences]
43
[+] score: 10
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR396e, osa-MIR528, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR169r, osa-MIR396f, osa-MIR395x, osa-MIR395y, osa-MIR3980a, osa-MIR3980b, osa-MIR5794
For example, many miRNAs, such as miR156, miR159, miR160, and miR166, were up-regulated by heat stress in wheat (Xin et al., 2010), whereas these miRNAs were down-regulated in our study. [score:7]
Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. [score:2]
Interestingly, among the 102 DE miRNAs, 17 miRNA families including miR156, miR397, and miR398 have been demonstrated to be involved in heat stress response at the seedling stage in rice and other plant species (Xin et al., 2010; Jeong et al., 2011; Yu et al., 2011; Chen et al., 2012; Guan et al., 2013), further implying their important roles in heat stress response. [score:1]
[1 to 20 of 3 sentences]
44
[+] score: 10
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR398a, osa-MIR398b, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR396e, gma-MIR156d, gma-MIR156e, gma-MIR156c, gma-MIR159a, gma-MIR160a, gma-MIR166a, gma-MIR166b, gma-MIR167a, gma-MIR167b, gma-MIR168a, gma-MIR172a, gma-MIR172b, gma-MIR156a, gma-MIR396a, gma-MIR396b, gma-MIR398a, gma-MIR398b, gma-MIR156b, gma-MIR169a, osa-MIR169r, gma-MIR159b, gma-MIR159c, gma-MIR164a, gma-MIR167c, gma-MIR169b, gma-MIR169c, gma-MIR1514a, gma-MIR1514b, gma-MIR1536, gma-MIR1530, osa-MIR396f, gma-MIR167d, gma-MIR396c, gma-MIR167e, gma-MIR167f, gma-MIR172c, gma-MIR172d, gma-MIR172e, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR396g, osa-MIR396h, osa-MIR396d, gma-MIR396d, gma-MIR167g, gma-MIR156f, gma-MIR169d, gma-MIR172f, gma-MIR169e, gma-MIR156g, gma-MIR159d, gma-MIR396e, gma-MIR156h, gma-MIR156i, gma-MIR160b, gma-MIR160c, gma-MIR160d, gma-MIR160e, gma-MIR164b, gma-MIR164c, gma-MIR164d, gma-MIR166c, gma-MIR166d, gma-MIR166e, gma-MIR166f, gma-MIR166g, gma-MIR166h, gma-MIR168b, gma-MIR169f, gma-MIR169g, gma-MIR398c, gma-MIR2118a, gma-MIR2118b, gma-MIR169h, gma-MIR167h, gma-MIR169i, gma-MIR396f, gma-MIR396g, gma-MIR167i, gma-MIR156j, gma-MIR156k, gma-MIR156l, gma-MIR156m, gma-MIR156n, gma-MIR156o, gma-MIR159e, gma-MIR159f, gma-MIR166i, gma-MIR166j, gma-MIR169j, gma-MIR169k, gma-MIR169l, gma-MIR169m, gma-MIR169n, gma-MIR172g, gma-MIR172h, gma-MIR172i, gma-MIR172j, gma-MIR396h, gma-MIR396i, gma-MIR167j, gma-MIR156p, gma-MIR172k, gma-MIR156q, gma-MIR172l, gma-MIR169o, gma-MIR169p, gma-MIR156r, gma-MIR396j, gma-MIR156s, gma-MIR169r, gma-MIR169s, gma-MIR396k, gma-MIR166k, gma-MIR156t, gma-MIR169t, gma-MIR166l, gma-MIR166m, gma-MIR169u, gma-MIR156u, gma-MIR156v, gma-MIR156w, gma-MIR156x, gma-MIR156y, gma-MIR156z, gma-MIR156aa, gma-MIR156ab, gma-MIR160f, gma-MIR164e, gma-MIR164f, gma-MIR164g, gma-MIR164h, gma-MIR164i, gma-MIR164j, gma-MIR164k, gma-MIR166n, gma-MIR166o, gma-MIR166p, gma-MIR166q, gma-MIR166r, gma-MIR166s, gma-MIR166t, gma-MIR166u, gma-MIR169v, gma-MIR398d, gma-MIR167k, gma-MIR167l, gma-MIR169w
It should be noted that many targets of a single conserved miRNA are in pairs with very similar sequences, and the gma-miR156, gma-miR160, gma-miR164, gma-miR166, gma-miR172 and gma-miR396 had at least 10 targets, with the gma-miR396 having more than 20 targets (Table 3). [score:7]
A series of targets for known miRNAs, including gma-miR156, gma-miR159, gma-miR160, gma-miR164, gma-miR167, gma-miR169, gma-miR396, gma-miR398 and gma-miR1514, belong to this class (Tables 3, 4). [score:3]
[1 to 20 of 2 sentences]
45
[+] score: 10
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR169a, osa-MIR393a, osa-MIR395d, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR414, osa-MIR396e, osa-MIR444a, osa-MIR528, osa-MIR529b, osa-MIR1432, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR1846d, osa-MIR1853, osa-MIR1860, osa-MIR396f, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR5072, osa-MIR5078, osa-MIR5826
Other genes including miR156/157 -targeted SPLs and miR172 -targeted AP2, which might play important role in salinity tolerance, were also identified in this study. [score:5]
It was reported that miR156-regulated SPLs and miR172 -targeted AP2 conjointly conditioned the transitions among different developmental stages [85]. [score:5]
[1 to 20 of 2 sentences]
46
[+] score: 9
Using four different pairs of primers, we were unable to obtain conclusive data about the expression of potential miR156 targets (LOC_Os04g46580 and LOC_Os07g 32170). [score:4]
1002176.g001 Figure 1(A) RNA gel blots showing expression of miR156, miR164, miR166, miR167, miR168 and miR172 in virus infected rice plants. [score:3]
As shown in Figure 1A, miR156, miR166 and miR167 were down regulated, whereas miR172 showed no obvious changes in accumulation. [score:2]
[1 to 20 of 3 sentences]
47
[+] score: 9
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR394, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR390, osa-MIR396e, osa-MIR528, osa-MIR169r, osa-MIR827, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR5083, ppe-MIR171f, ppe-MIR394a, ppe-MIR828, ppe-MIR171h, ppe-MIR171a, ppe-MIR171e, ppe-MIR169e, ppe-MIR319a, ppe-MIR319b, ppe-MIR171g, ppe-MIR171b, ppe-MIR171c, ppe-MIR156a, ppe-MIR156b, ppe-MIR156c, ppe-MIR156d, ppe-MIR156e, ppe-MIR156f, ppe-MIR156g, ppe-MIR156h, ppe-MIR156i, ppe-MIR159, ppe-MIR160a, ppe-MIR160b, ppe-MIR162, ppe-MIR164a, ppe-MIR164b, ppe-MIR164c, ppe-MIR164d, ppe-MIR166a, ppe-MIR166b, ppe-MIR166c, ppe-MIR166d, ppe-MIR166e, ppe-MIR167a, ppe-MIR167b, ppe-MIR167c, ppe-MIR167d, ppe-MIR168, ppe-MIR169a, ppe-MIR169b, ppe-MIR169c, ppe-MIR169d, ppe-MIR169f, ppe-MIR169g, ppe-MIR169h, ppe-MIR169i, ppe-MIR169j, ppe-MIR169k, ppe-MIR169l, ppe-MIR171d, ppe-MIR172a, ppe-MIR172b, ppe-MIR172c, ppe-MIR172d, ppe-MIR390, ppe-MIR393a, ppe-MIR393b, ppe-MIR394b, ppe-MIR396a, ppe-MIR396b, ppe-MIR397, ppe-MIR399a, ppe-MIR399b, ppe-MIR399c, ppe-MIR399d, ppe-MIR399e, ppe-MIR399f, ppe-MIR399g, ppe-MIR399h, ppe-MIR399i, ppe-MIR399j, ppe-MIR399k, ppe-MIR399l, ppe-MIR399m, ppe-MIR399n, ppe-MIR403, ppe-MIR827, ppe-MIR858
The largest number of targets was shown by miR156, miR172 and miR396, with 25, 21 and 22, respectively. [score:3]
MiR156 and miR157 not only targeted SQUAMOSA promoter -binding protein-like (SBP domain) transcription factors, but also genes encoding proteins associated with energy metabolism, glucose metabolism, redox status and ion transport (Table S4). [score:3]
The abundance of miRNA families also varied drastically: miR157, miR166 and miR156 were most frequently represented in the library, with 154,908, 79,863 and 73,043 reads, whereas miR172, miR167, miR168 and miR396 were moderately abundant in the library with 6,411, 5,280, 4,373 and 2,500 copies. [score:1]
Among the miRNA families in peach, miR156, miR159, miR160, miR166, miR171, miR319, miR390 and miR396 showed a high conservation in plants, indicating that these 12 peach miRNA families are ancient. [score:1]
The miR166, miR156 and miR157 families were the largest, with 15, 11 and 10 members, respectively, whereas 14 miRNA families had only a single member (Fig. 2A). [score:1]
[1 to 20 of 5 sentences]
48
[+] score: 9
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR394, osa-MIR395f, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398b, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR390, osa-MIR396e, osa-MIR444a, osa-MIR528, osa-MIR529a, osa-MIR810a, osa-MIR812a, osa-MIR812b, osa-MIR812c, osa-MIR812d, osa-MIR812e, osa-MIR818a, osa-MIR818b, osa-MIR818c, osa-MIR818d, osa-MIR818e, osa-MIR820a, osa-MIR820b, osa-MIR820c, osa-MIR529b, osa-MIR1425, osa-MIR1430, osa-MIR1432, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR810b, osa-MIR1440a, osa-MIR531b, osa-MIR1847, osa-MIR1848, osa-MIR1861a, osa-MIR1861b, osa-MIR1861c, osa-MIR1861d, osa-MIR1861e, osa-MIR1861f, osa-MIR1861g, osa-MIR1861h, osa-MIR1861i, osa-MIR1861j, osa-MIR1861k, osa-MIR1861l, osa-MIR1861m, osa-MIR1861n, osa-MIR1865, osa-MIR812f, osa-MIR1874, osa-MIR812g, osa-MIR812h, osa-MIR812i, osa-MIR812j, osa-MIR1320, osa-MIR827, osa-MIR2090, osa-MIR396f, osa-MIR2118c, osa-MIR2863a, osa-MIR2863b, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR812k, osa-MIR812l, osa-MIR812m, osa-MIR3979, osa-MIR3980a, osa-MIR3980b, osa-MIR812n, osa-MIR812o, osa-MIR3981, osa-MIR5082, osa-MIR2863c, osa-MIR5337a, osa-MIR812p, osa-MIR812q, osa-MIR812r, osa-MIR812s, osa-MIR812t, osa-MIR812u, osa-MIR812v, osa-MIR1440b, osa-MIR818f, osa-MIR1861o
Among them, 7 miRNAs, including miR156, miR168, miR169, miR171, miR319, miR396, and miR397 had the same expression pattern in our study. [score:3]
Under conditions of Cadmium(Cd) stress, 141 known miRNAs and 39 miRNAs express in the root and shoot, including miR156, miR159, miR168, miR169, miR171, miR369, miR529, miR1433, miR1440, etc. [score:3]
The miR156, miR164, miR166, miR167, miR169, miR171, and miR444 responded to Cd treatment in 7-day-old rice seedlings [17]. [score:1]
2, miR390-3p, miR531b, miR1430, miR1847.2, miR1865-5p, miR1874-3p, and miR5082, whereas 24 miRNAs were identified that were significantly accumulated in the whole roots, including miR156, miR164, miR166, osa-miR169, miR171, miR393, miR408, miR528, miR529, osa-miR812, miR1320, osa-miR1432, miR1861, miR3979, etc. [score:1]
In combination with prior reports, we identified 13 miRNAs, including miR156, miR164, miR166, miR167, miR169, miR171, miR444, miR397, miR528, miR1425, miR827, miR319a. [score:1]
[1 to 20 of 5 sentences]
49
[+] score: 8
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR393a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR393b, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR440, osa-MIR396e, osa-MIR528, osa-MIR529a, osa-MIR530, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR529b, osa-MIR1428a, osa-MIR169r, osa-MIR1428b, osa-MIR1428c, osa-MIR1428d, osa-MIR1428e, osa-MIR1862a, osa-MIR1862b, osa-MIR1862c, osa-MIR1866, osa-MIR1862d, osa-MIR1862e, osa-MIR1877, osa-MIR1428f, osa-MIR1428g, osa-MIR396f, osa-MIR2275a, osa-MIR2275b, osa-MIR2871a, osa-MIR2871b, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, osa-MIR1862f, osa-MIR1862g, osa-MIR2863c, osa-MIR5159, osa-MIR5337a, osa-MIR5485, osa-MIR2275c, osa-MIR2275d, osa-MIR5337b
For example, a genome-wide study conducted across different developmental stages of rice revealed that 16 miRNAs, including miR156, miR159 and miR168, were downregulated by drought stress, while 14 miRNAs, such as miR169, miR319 and miR395, were upregulated [42]. [score:8]
[1 to 20 of 1 sentences]
50
[+] score: 8
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR169a, osa-MIR393a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR393b, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, osa-MIR444a, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR166l, zma-MIR166m, zma-MIR393a, zma-MIR156k, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR820a, osa-MIR820b, osa-MIR820c, osa-MIR1425, osa-MIR1428a, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR1428b, osa-MIR1428c, osa-MIR1428d, osa-MIR1428e, osa-MIR1874, osa-MIR2055, osa-MIR827, osa-MIR1428f, osa-MIR1428g, zma-MIR396d, osa-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR827, osa-MIR395x, osa-MIR395y, zma-MIR444a, zma-MIR444b
This tandem array is functionally important as in maize over -expression of a tandem miR156 gene produces the Corngrass1 heterochronic mutant [39]. [score:3]
The functional significance for expressing tandem array of similar miRNAs is not clear, but it has been shown for the rice/maize miR156 and the Medicago miR166. [score:3]
These correspond to miR156 and miR395 in rice and maize [37- 39] and miR166 in Medicago truncatula [40]. [score:1]
In the case of the rice osa-miR156 is encoded by 12 loci, but only one of them encodes a tandem MIR156b-156c precursor [37]. [score:1]
[1 to 20 of 4 sentences]
51
[+] score: 8
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR171a, osa-MIR393a, osa-MIR397a, osa-MIR397b, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319b, osa-MIR166k, osa-MIR166l, osa-MIR168a, osa-MIR168b, osa-MIR169f, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR172d, osa-MIR171i, osa-MIR166m, osa-MIR166j, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR319b, zma-MIR166k, zma-MIR166j, zma-MIR168a, zma-MIR168b, zma-MIR169f, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR156k, osa-MIR529a, tae-MIR159a, tae-MIR159b, tae-MIR171a, tae-MIR1120a, osa-MIR1430, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR166n, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR393b, zma-MIR393c, zma-MIR397a, zma-MIR397b, hvu-MIR156a, tae-MIR156, hvu-MIR159b, hvu-MIR159a, hvu-MIR166a, hvu-MIR168, hvu-MIR171, hvu-MIR397a, tae-MIR171b, hvu-MIR1120, hvu-MIR166b, osa-MIR3981, hvu-MIR166c, tae-MIR1120b, tae-MIR397, tae-MIR1120c, hvu-MIR397b, hvu-MIR156b
Both 20 and 21 nt long miR156 were expressed at the highest level in 68-day-old plants. [score:3]
The 20 nt long mature miR156 was previously identified in barley using deep sequencing [48]. [score:1]
Hybridization also revealed the presence of two mature miR156, 20 and 21 nt long (Figure 6H). [score:1]
A 21 nt long mature miR156 with an additional adenosine residue at the 3 [′] end is annotated in the databases of many eukaryotic species [50, 51]. [score:1]
Based on nucleotide sequence and structural similarities, we classify barley MIR156 as an orthologue of rice MIR156g (Figure 6B). [score:1]
Both the 20 and 21 nt miR156 species were equally represented in 6-week- and 68-day-old plants; however, in 1- and 2-week-old plants, primarily the 20 nt long miR156 was detectable. [score:1]
[1 to 20 of 6 sentences]
52
[+] score: 7
In the present study, osa-miR156 was down-regulated in the three progeny lines compared with O. longistaminata, and the expression levels of OsSPL14 in the three progeny lines were higher than that in O. longistaminata. [score:5]
Through regulating the OsSPL14 (LOC_Os08g39890) gene osa-miR156 improved the grain yield of rice through changing its plant architecture [22]. [score:2]
[1 to 20 of 2 sentences]
53
[+] score: 7
It was reported that miR396, miR168, miR167, miR165, miR319, miR159, miR394, miR156, miR393, miR171, miR158, and miR169 were up-regulated in salt stress in Arabidopsis (Liu et al., 2008), while Ath-miR398 was down-regulated under salt stress (Jagadeeswaran et al., 2009). [score:7]
[1 to 20 of 1 sentences]
54
[+] score: 7
For example, miR156 was specifically highly expressed in young panicles of rice, and existed along with the whole development process of young panicles (Wang et al., 2010). [score:4]
Coincidentally, in wheat, expression levels of miR156 had been reported to be related to levels of resistance to wheat powdery mildew caused by a fungal pathogen (Xin et al., 2010, and Bej and Basak, 2014). [score:3]
[1 to 20 of 2 sentences]
55
[+] score: 7
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR171a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR396e, osa-MIR444a, osa-MIR528, osa-MIR529a, osa-MIR530, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR529b, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR1435, osa-MIR1849, osa-MIR1850, osa-MIR1856, osa-MIR1860, osa-MIR1861e, osa-MIR1862a, osa-MIR1862b, osa-MIR1862c, osa-MIR1870, osa-MIR1874, osa-MIR1862d, osa-MIR1862e, osa-MIR2055, osa-MIR827, osa-MIR2098, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, osa-MIR1862f, osa-MIR1862g
Several, such as miR156, miR159, miR164, miR166, miR167 and miR396, were expressed at high levels, indicating that, as they are highly expressed in other tissues such as leaf and root, these conserved miRNAs are possibly important regulators for rice plant development. [score:7]
[1 to 20 of 1 sentences]
56
[+] score: 6
These confirmed the strong correlations between expression variation of miR156 and yield-related phenotypes in the hybrid rice LYP9 (Lu and Zou, 2000; Yu et al., 2002). [score:3]
Moreover, Os02g04680, another target gene of miR156, was significantly mapped to the QTL AQE036 and AQE049, which only spanned one gene, for grain yield per panicle and 100-seed weight trait of yield, respectively (Table 3). [score:3]
[1 to 20 of 2 sentences]
57
[+] score: 6
Indeed, the miR156 -targeted SBP domain transcription factors play important roles in the regulation of stem cell function and flowering in plants 35, 36, 37. [score:4]
Manipulation of the miR156-OsSPL14-OsOTUB1 regulatory module also provides a potential strategy for facilitating the breeding of new rice varieties with higher grain productivity. [score:2]
[1 to 20 of 2 sentences]
58
[+] score: 6
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR396e, osa-MIR444a, osa-MIR529a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR529b, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR1436, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y
Five miRNA families (miR166, miR171, miR396, miR156, and miR444), whose target genes encode transcription factors, were all down-regulated in response to Cd exposure in rice [13]. [score:6]
[1 to 20 of 1 sentences]
59
[+] score: 6
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR408, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR413, osa-MIR414, osa-MIR415, osa-MIR416, osa-MIR417, osa-MIR418, osa-MIR419, osa-MIR426, osa-MIR390, osa-MIR396e, osa-MIR444a, osa-MIR530, osa-MIR535, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR818a, osa-MIR818b, osa-MIR818c, osa-MIR818d, osa-MIR818e, osa-MIR820a, osa-MIR820b, osa-MIR820c, osa-MIR1423, osa-MIR1425, osa-MIR1427, osa-MIR1428a, osa-MIR1429, osa-MIR1430, osa-MIR1431, osa-MIR1432, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR810b, osa-MIR1435, osa-MIR1436, osa-MIR1437a, osa-MIR1440a, osa-MIR1441, osa-MIR1442, osa-MIR1439, osa-MIR1428b, osa-MIR1428c, osa-MIR1428d, osa-MIR1428e, osa-MIR1428f, osa-MIR1428g, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, osa-MIR1440b, osa-MIR818f, osa-MIR1437b
miR156 is the second most highly expressed miRNA in rice seedlings as determined by the number of reads (Table 4). [score:3]
Of these, 7 miRNA families, i. e., miR156/157, miR160, miR159, miR319, miR165/166, miR390 and miR408 have been also found in primitive land plants such as Physcometrella and Selaginella suggesting that these are deeply conserved [18- 21]. [score:1]
miR156 is represented by 3 members (miR156a-j; miR156k and miR156l) that slightly differ in their sequences. [score:1]
Similarly, 2 miRNA families i. e., miR168 and miR156 families each of them accounted for 15% of the total miRNAs in these 3 libraries. [score:1]
[1 to 20 of 4 sentences]
60
[+] score: 6
miR156 and miR535 are all conserved in dicots and were predicted to target only one member of their respective target gene families (Additional file 6), suggesting potential gains of binding sites after the WGD. [score:5]
Genomic fragments of 650–850-bp containing the binding sites of the miRNAs (miR156::Os08g39890, miR159::Os01g59600, miR390::Os02g10100, miR395::Os03g09930, miR408::Os03g15340 and miR820a::Os03g02010) were amplified and sequenced (Accession nos. [score:1]
[1 to 20 of 2 sentences]
61
[+] score: 6
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR319b, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR169j, osa-MIR169m, osa-MIR171d, osa-MIR171f, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR396e, osa-MIR444a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR820c, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR1441, osa-MIR1846b, osa-MIR1882e, osa-MIR1883b, osa-MIR1846e, osa-MIR396f, osa-MIR2120, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR2879, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, osa-MIR5158, osa-MIR5143b, osa-MIR5835, osa-MIR7693, osa-MIR7695
Again, we confirmed that those genes were targets of miRNA156 and miRNA 159 families in this study. [score:3]
A previous study demonstrated that the miRNA156 and miRNA 159 families target transcription factors such as OsSPL2—SBP-box gene family and MYB family [18]. [score:3]
[1 to 20 of 2 sentences]
62
[+] score: 6
For example, the target of miR156/157 is Colorless Non-Ripening (CNR) (Karlova et al., 2013), an epigenetic mutation of which could inhibit tomato fruit ripening (Manning et al., 2006). [score:6]
[1 to 20 of 1 sentences]
63
[+] score: 5
We performed qRT-PCR to clarify the tissue-specific expression pattern of IPA1 and of two miRNAs thought to target IPA1 at different stages, miR156 and miR529 (ref. [score:5]
[1 to 20 of 1 sentences]
64
[+] score: 5
In tomato, miR156 can regulate pistil development by targeting the SBP-box gene (Silva et al. 2014). [score:5]
[1 to 20 of 1 sentences]
65
[+] score: 5
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR414, osa-MIR419, osa-MIR435, osa-MIR390, osa-MIR396e, osa-MIR530, osa-MIR535, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR1426, osa-MIR169r, osa-MIR1436, osa-MIR1440a, osa-MIR827, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, ctr-MIR156, ctr-MIR166, ctr-MIR319, ctr-MIR164, ctr-MIR167, ctr-MIR171, osa-MIR395x, osa-MIR395y, osa-MIR1440b
We also found homologs of known miRNA target genes for several conserved C. trifoliata miRNAs, such as SBP for miR156, ATP synthase for miR159, ARF for miR160, NAC for miR164, HD-Zip for miR165 and miR166, Anthocyanidin synthase for miR169, GRAS for miR171, AP2 for miR172, TCP for miR319, TIR for miR393, F-box for miR394, Sulfate transporter 2.1 for miR395, IRX12 copper ion binding/oxidoreductase for miR397, ARGONAUTE 2 for miR403, Basic blue copper protein for miR408 and Zinc finger protein-related for miR414. [score:3]
Additionally, fifteen miRNA families namely miR156, miR159, miR160, miR162, miR164, miR166, miR167, miR168, miR169, miR171, miR172, miR390, miR394, miR403, and miR1446, were found to have some thousands to tens of thousands of redundancies while four families (miR395, miR396, miR397, miR414, and miR827), had more than one hundred redundancies. [score:1]
For example, miR319, miR156/157, miR169, miR165/166, and miR394 have been found in 51, 45, 41, 40, and 40 plant species, respectively [9]. [score:1]
[1 to 20 of 3 sentences]
66
[+] score: 5
Furthermore, recent studies have shown that the microRNA156 targeted gene SPL9 could bypass the function of GL1 and directly binds to promoters of TCL1 and TRY to activate their expression (Yu et al. 2010). [score:5]
[1 to 20 of 1 sentences]
67
[+] score: 5
Lastly, a number of genes involved in phase change and the regulation of the length of the vegetative growth phase were also identified (SPL9, SPL11, miR156), suggesting that phase change and flowering time are intimately connected. [score:2]
96: 31– 36 Wang J. W. Czech B. Weigel D., 2009  miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. [score:2]
Phase change genes such as SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9) and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 11 (SPL11), and the microRNA miR156 were also identified as candidates for differences in flowering time. [score:1]
[1 to 20 of 3 sentences]
68
[+] score: 5
Interestingly, a very recent study in Arabidopsis revealed that loss of miR159 increases miR156 level and the repression of miR156 by miR159 is largely mediated by MYB33, an R2R3 MYB domain transcription factor targeted by miR159 (Guo et al., 2017). [score:3]
Repression of miR156 by miR159 regulates the timing of the juvenile-to-adult transition in arabidopsis. [score:2]
[1 to 20 of 2 sentences]
69
[+] score: 5
In rice, SPL14 is the target of osa-miR156, where an SNP occurred in the target site perturbs the normal miR156- SPL14 interaction, and thereby leading to producing improved plant architecture (Jiao et al. 2010). [score:5]
[1 to 20 of 1 sentences]
70
[+] score: 5
Overexpression of miR156 in switchgrass (Panicum virgatum L. ) results in various morphological alterations and leads to improved biomass production. [score:3]
Transgenic switchgrass overexpressing miR156 exhibited different morphological phenotypes compared with wild-type, and the degree of alteration depended on miR156 levels, where relatively low miR156 levels could increase biomass yield (Chuck et al., 2011; Fu et al., 2012). [score:2]
[1 to 20 of 2 sentences]
71
[+] score: 5
We found that At2g33810 in the At2g33810/At2g33815 pair was a target of miR156 and At1g53230 in the At1g53230/At1g53233 pair was a target of miR319. [score:5]
[1 to 20 of 1 sentences]
72
[+] score: 4
GS3 encodes the γ-subunit 3 of a heterotrimeric G-protein (Li et al. 2012); GW2 encodes a RING-type domain with E3 ubiquitin ligase activity (Song et al. 2007); qSW5/GW5 encodes a novel nucleoprotein that interacts with polyubiquitin in a yeast two-hybrid experiment (Weng et al. 2008); GS5 encodes a putative serine carboxypeptidase and acts as a positive regulatory factor in the cell cycle (Li et al. 2011); GW8 encodes the transcription factor Squamosa promoter -binding protein-like 16 containing the miR156 -targeted site (Wang et al. 2012); GL3.1 encodes a Ser/Thr phosphatase of the protein phosphatase of the kelch-like family (Qi et al. 2012; Zhang et al. 2012); TGW6 encodes a protein with indole-3-acetic acid-glucose hydrolase activity (Ishimaru et al. 2013); GW6a encodes a functional GCN5-related N-acetyl-transferase-like protein that harbors intrinsic histone acetyl-transferase activity (Song et al. 2015); and GL7/GW7 encodes a homolog of the Arabidopsis thaliana TONNEAU1 recruiting motif (TRM) protein (Wang et al. 2015a, b). [score:4]
[1 to 20 of 1 sentences]
73
[+] score: 4
Similar situations were found in other Vvi-miRNA families like Vvi-miR156, Vvi-miR164, Vvi-miR167, Vvi-miR403 and Vvi-miR535 (Table  2), suggesting the Vvi-miRNAs responsive to exogenous GA [3] application possess multiple aspects and functions during the development of grapevine berries. [score:2]
In this family, the number of Vvi-miR166h reads was over 500,000 in the two libraries, followed by Vvi-miR156, Vvi-miR168, Vvi-miR167, Vvi-miR479, Vvi-miR482 families, whose redundancies were more than several ten thousands. [score:1]
Eighteen of the 27 Vvi-miRNA families contained many members (Table  2), with four families (Vvi-miR169, Vvi-miR156, Vvi-miR166, Vvi-miR171 and Vvi-miR399) possessing 19, 8, 7, 8, and 7 members, respectively. [score:1]
[1 to 20 of 3 sentences]
74
[+] score: 4
Both mimics and downstream targets were discovered for the two miR156 genes. [score:3]
For instances, only one member of miR156 families in both plants, i. e. ath-miR156h and osa-miR156k, was identified within the established comprehensive networks (Additional file 13: Figure S9). [score:1]
[1 to 20 of 2 sentences]
75
[+] score: 4
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR171a, osa-MIR393a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR156k, osa-MIR156l, osa-MIR166k, osa-MIR166l, osa-MIR168a, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR166m, osa-MIR166j, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR396b, zma-MIR396a, zma-MIR156j, zma-MIR166k, zma-MIR166j, zma-MIR168a, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR393a, zma-MIR408a, zma-MIR156k, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR1432, zma-MIR156l, zma-MIR166n, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR408b, zma-MIR482, zma-MIR1432, osa-MIR395x, osa-MIR395y
The expression of teosinte glume architecture1 (tga1), which plays an important role in maize domestication, is regulated by miR156 [28]. [score:4]
[1 to 20 of 1 sentences]
76
[+] score: 4
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR162a, osa-MIR164a, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159b, osa-MIR162b, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR408, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR437, osa-MIR396e, osa-MIR444a, osa-MIR528, osa-MIR529a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR529b, tae-MIR159b, tae-MIR167a, tae-MIR399, tae-MIR408, tae-MIR444a, osa-MIR1432, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR1848, osa-MIR1858a, osa-MIR1858b, osa-MIR1862a, osa-MIR1862b, osa-MIR1862c, osa-MIR1871, osa-MIR1862d, osa-MIR1862e, osa-MIR827, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, hvu-MIR156a, tae-MIR156, hvu-MIR159b, hvu-MIR166a, tae-MIR167b, hvu-MIR168, tae-MIR395a, tae-MIR395b, hvu-MIR397a, tae-MIR398, tae-MIR444b, hvu-MIR166b, hvu-MIR444a, osa-MIR1862f, osa-MIR1862g, hvu-MIR399, hvu-MIR444b, hvu-MIR166c, tae-MIR396, tae-MIR167c, tae-MIR397, hvu-MIR397b, hvu-MIR156b
Recent studies showed that miR172 acts downstream of miR156 and is regulated by miR156 [56]. [score:2]
Interestingly, miR156 is the second most abundant miRNA in the barley dataset, accounting for about 3.7% of the total reads (Additional file 1). [score:1]
These results, combined with the fact that Brachypodium is closer to barley than to rice [57, 58], lead us to speculate that miR156 may have different or additional roles in barley and Brachypodium relative to rice. [score:1]
[1 to 20 of 3 sentences]
77
[+] score: 4
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR159a, ath-MIR160a, ath-MIR160b, ath-MIR160c, ath-MIR164a, ath-MIR164b, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR167a, ath-MIR167b, ath-MIR168a, ath-MIR168b, ath-MIR171a, ath-MIR172a, ath-MIR172b, ath-MIR159b, ath-MIR319a, osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR171a, ath-MIR167d, ath-MIR172c, ath-MIR172d, ath-MIR393a, ath-MIR393b, ath-MIR396a, ath-MIR396b, ath-MIR398a, osa-MIR393a, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR398a, ath-MIR156g, ath-MIR156h, ath-MIR159c, ath-MIR164c, ath-MIR167c, ath-MIR172e, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR393b, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR437, osa-MIR396e, osa-MIR444a, osa-MIR528, osa-MIR531a, osa-MIR1425, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR531b, osa-MIR1862a, osa-MIR1862b, osa-MIR1862c, osa-MIR1873, osa-MIR1862d, osa-MIR1862e, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR1862f, osa-MIR1862g, ath-MIR5021, osa-MIR5072, osa-MIR5077, ath-MIR156i, ath-MIR156j, osa-MIR531c
First such report was published in 2011, which disclosed the role of miR156 in regulating the amount of anthocyanin by targeting the SPL genes [40]. [score:4]
[1 to 20 of 1 sentences]
78
[+] score: 4
A similar study showed that miR156, miR166, miR171, miR172, miR319, miR164 along with their target genes, were differentially expressed in stress-tolerant maize hybrids compared with stress-sensitive lines [52]. [score:4]
[1 to 20 of 1 sentences]
79
[+] score: 4
Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156 -targeted SPL transcription factor. [score:4]
[1 to 20 of 1 sentences]
80
[+] score: 4
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR156k, osa-MIR156l, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR408, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR396e, osa-MIR444a, osa-MIR531a, osa-MIR810a, osa-MIR812a, osa-MIR812b, osa-MIR812c, osa-MIR812d, osa-MIR812e, osa-MIR820a, osa-MIR820b, osa-MIR820c, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR810b, osa-MIR531b, osa-MIR1846d, osa-MIR1846a, osa-MIR1846b, osa-MIR1861a, osa-MIR1861b, osa-MIR1861c, osa-MIR1861d, osa-MIR1861e, osa-MIR1861f, osa-MIR1861g, osa-MIR1861h, osa-MIR1861i, osa-MIR1861j, osa-MIR1861k, osa-MIR1861l, osa-MIR1861m, osa-MIR1861n, osa-MIR1862a, osa-MIR1862b, osa-MIR1862c, osa-MIR812f, osa-MIR1874, osa-MIR1862d, osa-MIR1862e, osa-MIR812g, osa-MIR812h, osa-MIR812i, osa-MIR812j, osa-MIR1846c, osa-MIR1846e, osa-MIR396f, osa-MIR2103, osa-MIR2105, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR812k, osa-MIR812l, osa-MIR812m, osa-MIR1862f, osa-MIR1862g, osa-MIR812n, osa-MIR812o, osa-MIR812p, osa-MIR812q, osa-MIR812r, osa-MIR812s, osa-MIR812t, osa-MIR812u, osa-MIR812v, osa-MIR1861o, osa-MIR531c
Among the 20 conserved miRNA families, osa-miR156 and osa-168 were the most abundant miRNA families observed during grain development, accounting for 80.45% of expressed miRNA reads. [score:4]
[1 to 20 of 1 sentences]
81
[+] score: 4
High-throughput sequencing of miRNAs showed that 14 rice miRNA families (osa-miR156, miR160, miR164, miR166, miR167, miR168, miR171, miR319, miR396, miR397, miR408, miR528, miR530, miR820) were significantly down-regulated after drought treatment [23]. [score:4]
[1 to 20 of 1 sentences]
82
[+] score: 3
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR413, osa-MIR414, osa-MIR415, osa-MIR416, osa-MIR417, osa-MIR418, osa-MIR419, osa-MIR426, osa-MIR435, osa-MIR390, osa-MIR396e, ptc-MIR156a, ptc-MIR156b, ptc-MIR156c, ptc-MIR156d, ptc-MIR156e, ptc-MIR156f, ptc-MIR156g, ptc-MIR156h, ptc-MIR156i, ptc-MIR156j, ptc-MIR156k, ptc-MIR159a, ptc-MIR159b, ptc-MIR159d, ptc-MIR159e, ptc-MIR159c, ptc-MIR160a, ptc-MIR160b, ptc-MIR160c, ptc-MIR160d, ptc-MIR160e, ptc-MIR160f, ptc-MIR160g, ptc-MIR160h, ptc-MIR162a, ptc-MIR162b, ptc-MIR168a, ptc-MIR168b, ptc-MIR169a, ptc-MIR169aa, ptc-MIR169ab, ptc-MIR169ac, ptc-MIR169ad, ptc-MIR169ae, ptc-MIR169af, ptc-MIR169b, ptc-MIR169c, ptc-MIR169d, ptc-MIR169e, ptc-MIR169f, ptc-MIR169g, ptc-MIR169h, ptc-MIR169i, ptc-MIR169j, ptc-MIR169k, ptc-MIR169l, ptc-MIR169m, ptc-MIR169n, ptc-MIR169o, ptc-MIR169p, ptc-MIR169q, ptc-MIR169r, ptc-MIR169s, ptc-MIR169t, ptc-MIR169u, ptc-MIR169v, ptc-MIR169w, ptc-MIR169x, ptc-MIR169y, ptc-MIR169z, ptc-MIR171a, ptc-MIR171b, ptc-MIR171c, ptc-MIR171d, ptc-MIR171e, ptc-MIR171f, ptc-MIR171g, ptc-MIR171h, ptc-MIR171i, ptc-MIR172a, ptc-MIR172b, ptc-MIR172c, ptc-MIR172d, ptc-MIR172e, ptc-MIR172f, ptc-MIR172g, ptc-MIR172h, ptc-MIR172i, ptc-MIR319a, ptc-MIR319b, ptc-MIR319c, ptc-MIR319d, ptc-MIR319e, ptc-MIR319f, ptc-MIR319g, ptc-MIR319h, ptc-MIR319i, ptc-MIR390a, ptc-MIR390b, ptc-MIR390c, ptc-MIR390d, ptc-MIR393a, ptc-MIR393b, ptc-MIR393c, ptc-MIR396a, ptc-MIR396b, ptc-MIR396c, ptc-MIR396d, ptc-MIR396e, ptc-MIR396f, ptc-MIR396g, ptc-MIR397a, ptc-MIR397b, ptc-MIR397c, ptc-MIR403a, ptc-MIR403b, ptc-MIR408, ptc-MIR477e, ptc-MIR477f, ptc-MIR474a, ptc-MIR474b, ptc-MIR474c, ptc-MIR475a, ptc-MIR475b, ptc-MIR475c, ptc-MIR475d, ptc-MIR476a, ptc-MIR476b, ptc-MIR477a, ptc-MIR477b, ptc-MIR478a, ptc-MIR478b, ptc-MIR478c, ptc-MIR478d, ptc-MIR478e, ptc-MIR478f, ptc-MIR478h, ptc-MIR478i, ptc-MIR478j, ptc-MIR478k, ptc-MIR478l, ptc-MIR478m, ptc-MIR478o, ptc-MIR478p, ptc-MIR478q, ptc-MIR478r, ptc-MIR478s, ptc-MIR478n, ptc-MIR481a, ptc-MIR481b, ptc-MIR481c, ptc-MIR481d, ptc-MIR482a, ptc-MIR171k, ptc-MIR403c, osa-MIR169r, ptc-MIR171l, ptc-MIR171m, ptc-MIR171j, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, ptc-MIR482d, ptc-MIR477c, ptc-MIR156l, ptc-MIR169ag, ptc-MIR482b, ptc-MIR477d, ptc-MIR482c, ptc-MIR828a, ptc-MIR828b, ptc-MIR403d
Several Arabidopsis and rice families such as miR156/157, miR159/319, miR162, miR172, miR396, miR397, miR473, and miR475 are nearly double in size in Populus. [score:1]
miR156/157, miR159 and miR319 are represented by 22 and 38 members respectively and three other families (miR169, miR170/171, miR165/166) are represented by more than 20 members. [score:1]
For families miR156/157, miR159, miR319, miR162, miR172, miR396, miR397, miR473, miR475 and miR482, the number of members identified in this study was at least twice that reported previously [3, 26] (Fig. 2). [score:1]
[1 to 20 of 3 sentences]
83
[+] score: 3
Sugars, through HEXOKINASE1 -dependent signaling, repress microRNA156 at transcriptional and post-transcriptional levels which release the inhibition of key regulators of juvenile-to-adult and vegetative-to-reproductive phase transition like SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcriptional factors [66, 67]. [score:3]
[1 to 20 of 1 sentences]
84
[+] score: 3
For instance, 10 of 16 Arabidopsis SPLs (SPL2-6, SPL9-11, SPL13, and SPL15) from 5 clades are miR156/157 targets [66], and play a similar role in phase transition [65], whereas the clade I-, II- and III-containing genes lack miR156 and miR157 -binding sites. [score:3]
[1 to 20 of 1 sentences]
85
[+] score: 3
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR156k, osa-MIR156l, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR390, osa-MIR396e, osa-MIR528, osa-MIR529a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR529b, osa-MIR169r, osa-MIR827, osa-MIR396f, bdi-MIR171a, bdi-MIR167a, bdi-MIR397a, bdi-MIR156a, bdi-MIR172d, bdi-MIR166a, bdi-MIR171c, bdi-MIR169b, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, bdi-MIR169d, bdi-MIR169i, bdi-MIR395a, bdi-MIR169j, bdi-MIR166f, bdi-MIR171b, bdi-MIR390a, bdi-MIR160a, bdi-MIR528, bdi-MIR395b, bdi-MIR166d, bdi-MIR171d, bdi-MIR167b, bdi-MIR166b, bdi-MIR160b, bdi-MIR164b, bdi-MIR167c, bdi-MIR396d, bdi-MIR169k, bdi-MIR168, bdi-MIR160c, bdi-MIR396c, bdi-MIR167d, bdi-MIR156b, bdi-MIR169g, bdi-MIR160d, bdi-MIR160e, bdi-MIR396e, bdi-MIR156c, bdi-MIR172a, bdi-MIR396a, bdi-MIR166e, bdi-MIR166c, bdi-MIR169e, bdi-MIR394, bdi-MIR398a, bdi-MIR164a, bdi-MIR393a, bdi-MIR169a, bdi-MIR172b, bdi-MIR156d, bdi-MIR393b, bdi-MIR169h, bdi-MIR396b, bdi-MIR169c, bdi-MIR395c, bdi-MIR827, bdi-MIR166g, bdi-MIR319a, bdi-MIR395d, bdi-MIR398b, bdi-MIR164c, bdi-MIR169f, bdi-MIR162, bdi-MIR164e, bdi-MIR164f, bdi-MIR395m, bdi-MIR395e, bdi-MIR395f, bdi-MIR395g, bdi-MIR395h, bdi-MIR395j, bdi-MIR395k, bdi-MIR395l, bdi-MIR395n, bdi-MIR529, bdi-MIR319b, bdi-MIR397b, bdi-MIR156e, bdi-MIR156f, bdi-MIR156g, bdi-MIR156h, bdi-MIR156i, bdi-MIR166h, bdi-MIR166i, bdi-MIR167e, bdi-MIR395o, bdi-MIR395p, bdi-MIR156j, bdi-MIR160f, bdi-MIR166j, bdi-MIR167f, bdi-MIR167g, bdi-MIR169l, bdi-MIR169m, bdi-MIR169n, bdi-MIR171e, bdi-MIR171f, bdi-MIR395q
Some of these miRNAs including miR156, miR160, miR166 and mi171 are deeply conserved, even in lower plants such as Physcomitrella patens [45]. [score:1]
For example, the number of family members for miR156, miR160, miR164, miR166, miR167, miR171 and miR396 in Brachypodium was similar to that in Arabidopsis, but much higher in rice and Populus (Table 4). [score:1]
For example, seven families (miR156, miR160, miR164, miR166, miR167, miR171 and miR396) had similar number of members in Brachypodium and Arabidopsis, but their sizes were much larger in rice and Populus (Table 4). [score:1]
[1 to 20 of 3 sentences]
86
[+] score: 3
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR159a, ath-MIR169a, ath-MIR159b, osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR169a, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169k, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR391, ath-MIR156g, ath-MIR156h, ath-MIR159c, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, gma-MIR156d, gma-MIR156e, gma-MIR156c, gma-MIR159a, gma-MIR156a, gma-MIR156b, gma-MIR169a, osa-MIR535, ath-MIR781a, ath-MIR782, ath-MIR847, osa-MIR169r, gma-MIR159b, gma-MIR159c, gma-MIR169b, gma-MIR169c, osa-MIR1846d, osa-MIR1857, osa-MIR1846a, osa-MIR1846b, osa-MIR1846c, osa-MIR1846e, ath-MIR2112, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, gma-MIR391, gma-MIR156f, gma-MIR169d, gma-MIR169e, gma-MIR156g, gma-MIR159d, gma-MIR156h, gma-MIR156i, gma-MIR169f, gma-MIR169g, gma-MIR2118a, gma-MIR2118b, gma-MIR169h, gma-MIR169i, gma-MIR156j, gma-MIR156k, gma-MIR156l, gma-MIR156m, gma-MIR156n, gma-MIR156o, gma-MIR159e, gma-MIR159f, gma-MIR169j, gma-MIR169k, gma-MIR169l, gma-MIR169m, gma-MIR169n, ath-MIR781b, ath-MIR156i, ath-MIR156j, gma-MIR156p, gma-MIR156q, gma-MIR169o, gma-MIR169p, gma-MIR156r, gma-MIR156s, gma-MIR169r, gma-MIR169s, gma-MIR156t, gma-MIR169t, gma-MIR169u, gma-MIR156u, gma-MIR156v, gma-MIR156w, gma-MIR156x, gma-MIR156y, gma-MIR156z, gma-MIR156aa, gma-MIR156ab, gma-MIR169v, gma-MIR169w
Although only a few cleavage targets of the highly accumulated RC-miRNAs were detected, several RC-miRNAs were shown to possess great potential to guide DNA methylation in both Arabidopsis (RC_ath-miR2112, RC_ath-miR391, RC_ath-miR781, RC_ath-miR782, and RC_ath-miR847) and rice (RC_osa-miR156, RC_osa-miR159, RC_osa-miR169, RC_osa-miR1846, RC_osa-miR2118, and RC_osa-miR535) (Figure 4 and Table S6). [score:3]
[1 to 20 of 1 sentences]
87
[+] score: 3
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR397a, osa-MIR397b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172b, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR169r, osa-MIR1876, osa-MIR395x, osa-MIR395y
Most of the few reported plant miRNA clusters contain several copies of the same conserved miRNA (miR156, miR166, miR169, miR395 or miR399), in contrast to animals where miRNAs with unrelated sequences are often included in the same clusters [18, 19, 25, 35]. [score:1]
In plant genomes, miR156, miR160, miR162, miR167, miR169, miR171 and miR395 families experienced large expansions via tandem or segmental duplication events and loss of family members ([29, 30, 52] and this study). [score:1]
Previous analyses of miR395 clusters in rice and M. truncatula, as well as a miR156 cluster in rice, maize, sugarcane, sorghum and even a dicot (Ipomea nil), have suggested conservation of homologous miRNA clusters in various plant genomes [16, 29, 30]. [score:1]
[1 to 20 of 3 sentences]
88
[+] score: 3
To test this hypothesis, we overexpressed AtHYL1, Δ D1-HYL1, a double-stranded RNA binding domain 1 deletion form of AtHYL, NS3-Δ D1D2-HYL1, a fusion protein of NS3 and ΔD1D2-HYL1 and NS3 (Fig 5C) in Arabidopsis hyl1-2 mutant background, the transgenes were all driven by a 35S promoter with the proteins tagged with a myc-epitope tag at the N-terminus, we found that the fusion protein NS3-ΔD1D2-AtHYL1 could ameliorated the phenotype (Fig 5D) and miRNA (miR156, miR164, miR168 and miR395) levels (Fig 5E) of hyl1-2 mutant as HYL1 did but NS3 or ΔD1-HYL1 could not (Fig 5D and 5E), we test these transgenic Arabidopsis plants by western blotting (Fig 5F), and this results indicated that NS3 could substitute for the dsRBD domain of AtHYL1 in miRNA processing. [score:3]
[1 to 20 of 1 sentences]
89
[+] score: 3
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR393b, osa-MIR408, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR390, osa-MIR528, osa-MIR529a, osa-MIR812a, osa-MIR812b, osa-MIR812c, osa-MIR812d, osa-MIR812e, osa-MIR815c, osa-MIR818d, osa-MIR529b, osa-MIR1425, osa-MIR1428a, osa-MIR169r, osa-MIR1436, osa-MIR1428b, osa-MIR1428c, osa-MIR1428d, osa-MIR1428e, osa-MIR1858a, osa-MIR1861a, osa-MIR1861b, osa-MIR1861c, osa-MIR1861d, osa-MIR1861e, osa-MIR1861f, osa-MIR1861g, osa-MIR1861h, osa-MIR1861i, osa-MIR1861j, osa-MIR1861k, osa-MIR1861l, osa-MIR1861m, osa-MIR1861n, osa-MIR812f, osa-MIR1862d, osa-MIR812g, osa-MIR812h, osa-MIR812i, osa-MIR812j, osa-MIR1428f, osa-MIR1428g, osa-MIR812k, osa-MIR812l, osa-MIR812m, osa-MIR812n, osa-MIR812o, osa-MIR812p, osa-MIR812q, osa-MIR812r, osa-MIR812s, osa-MIR812t, osa-MIR812u, osa-MIR812v, osa-MIR1861o
MiR156 and miR166 play a role in overall spikelets development, while miR167, miR164, miR812, miR1861, miR1428 and miR45 play a specific role in the differentiation during rice grain filling (Fig. 8 ). [score:2]
Similar trends were observed in miR156, miR164, miR166, and miR1861 (Fig. 7B–E ), but were not apparent for miR812 (Fig. 7F ). [score:1]
[1 to 20 of 2 sentences]
90
[+] score: 3
Among the known rice miRNAs (miRBase version21), five miRNA families (miR156, miR159, miR166, miR167 and miR168) were highly expressed as detected by the sequencing based small RNA profiling. [score:3]
[1 to 20 of 1 sentences]
91
[+] score: 3
2015.00101 26258121 9. Johnson CR Millwood RJ Tang Y Gou J Sykes RW Turner GB Davis MF Sang Y Wang Z-Y Stewart CN Jr Field-grown miR156-transgenic switchgrass reproduction, yield, global gene expression analysis, and bioconfinementBiotechnol Biofuels 2017 10. [score:3]
[1 to 20 of 1 sentences]
92
[+] score: 3
Other miRNAs from this paper: osa-MIR156a, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR172d
Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. [score:3]
[1 to 20 of 1 sentences]
93
[+] score: 3
For example, miR156/7 targets SPL genes required for male fertility in Arabidopsis [44]. [score:3]
[1 to 20 of 1 sentences]
94
[+] score: 3
Dual effects of miR156 -targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. [score:3]
[1 to 20 of 1 sentences]
95
[+] score: 3
We examined certain miRNAs (miR156, miR171a, miR390b, and miR168a) because they had previously been shown to be expressed in leaves (Yang et al, [2006]; Zhan et al, [2012]). [score:3]
[1 to 20 of 1 sentences]
96
[+] score: 2
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR156k, osa-MIR156l, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR167j, osa-MIR166m, osa-MIR166j, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, gma-MIR156d, gma-MIR156e, gma-MIR156c, gma-MIR166a, gma-MIR166b, gma-MIR167a, gma-MIR167b, gma-MIR168a, gma-MIR156a, gma-MIR156b, zma-MIR156j, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR166l, zma-MIR166m, zma-MIR156k, osa-MIR535, gma-MIR167c, gma-MIR1507a, gma-MIR167d, gma-MIR1507b, gma-MIR167e, gma-MIR167f, zma-MIR156l, zma-MIR166n, zma-MIR167j, gma-MIR167g, gma-MIR156f, gma-MIR156g, gma-MIR156h, gma-MIR156i, gma-MIR166c, gma-MIR166d, gma-MIR166e, gma-MIR166f, gma-MIR166g, gma-MIR166h, gma-MIR168b, gma-MIR1507c, gma-MIR167h, gma-MIR167i, gma-MIR3522, gma-MIR156j, gma-MIR156k, gma-MIR156l, gma-MIR156m, gma-MIR156n, gma-MIR156o, gma-MIR166i, gma-MIR166j, gma-MIR167j, gma-MIR156p, gma-MIR156q, gma-MIR156r, gma-MIR156s, gma-MIR166k, gma-MIR156t, gma-MIR166l, gma-MIR166m, gma-MIR156u, gma-MIR156v, gma-MIR156w, gma-MIR156x, gma-MIR156y, gma-MIR156z, gma-MIR156aa, gma-MIR156ab, gma-MIR166n, gma-MIR166o, gma-MIR166p, gma-MIR166q, gma-MIR166r, gma-MIR166s, gma-MIR166t, gma-MIR166u, gma-MIR167k, gma-MIR167l
The second and third most abundant miRNAs in the pig abdominal fat dataset are miR156 and miR168, with 1584 and 1085 reads, respectively (Additional file 2). [score:1]
The plant miRNAs used in the search include miR156, miR166, miR167, miR168, miR535 and miR3522. [score:1]
[1 to 20 of 2 sentences]
97
[+] score: 2
Very recently, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 15 (AtSPL) was demonstrated to be regulated by miR156 and to promote flowering under non-inductive conditions (Hyun et al., 2016). [score:2]
[1 to 20 of 1 sentences]
98
[+] score: 2
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR396e, mtr-MIR166a, mtr-MIR169a, mtr-MIR399b, mtr-MIR399d, mtr-MIR393a, mtr-MIR399c, mtr-MIR399a, mtr-MIR399e, mtr-MIR156a, mtr-MIR171a, mtr-MIR156b, mtr-MIR167a, mtr-MIR166b, mtr-MIR169c, mtr-MIR169d, mtr-MIR169e, mtr-MIR171b, mtr-MIR166c, mtr-MIR166d, mtr-MIR169f, mtr-MIR156c, mtr-MIR156d, mtr-MIR399f, mtr-MIR399g, mtr-MIR399h, mtr-MIR399i, mtr-MIR399j, mtr-MIR399k, mtr-MIR166e, mtr-MIR156e, mtr-MIR171c, mtr-MIR398a, mtr-MIR172a, mtr-MIR393b, mtr-MIR398b, mtr-MIR168a, mtr-MIR169g, mtr-MIR156f, mtr-MIR399l, mtr-MIR156g, mtr-MIR399m, mtr-MIR399n, mtr-MIR399o, mtr-MIR398c, mtr-MIR156h, mtr-MIR166f, mtr-MIR166g, mtr-MIR171d, mtr-MIR171e, mtr-MIR396a, mtr-MIR396b, mtr-MIR169h, mtr-MIR169b, mtr-MIR156i, mtr-MIR171f, mtr-MIR399p, osa-MIR169r, sly-MIR166a, sly-MIR166b, sly-MIR167a, sly-MIR169a, sly-MIR169b, sly-MIR169c, sly-MIR169d, sly-MIR171a, sly-MIR171b, sly-MIR171c, sly-MIR171d, sly-MIR397, sly-MIR156a, sly-MIR156b, sly-MIR156c, sly-MIR172a, sly-MIR172b, sly-MIR399, osa-MIR827, osa-MIR396f, mtr-MIR2118, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, mtr-MIR169k, mtr-MIR169j, mtr-MIR399q, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR5072, mtr-MIR4414a, mtr-MIR4414b, mtr-MIR482, mtr-MIR172b, mtr-MIR172c, mtr-MIR171h, mtr-MIR168b, mtr-MIR399r, mtr-MIR156j, sly-MIR482e, sly-MIR482a, mtr-MIR167b, mtr-MIR168c, mtr-MIR408, mtr-MIR396c, mtr-MIR171g, stu-MIR6024, sly-MIR6024, stu-MIR482c, stu-MIR482b, stu-MIR482a, stu-MIR482d, stu-MIR482e, sly-MIR482b, sly-MIR482c, stu-MIR6025, stu-MIR6026, sly-MIR6026, sly-MIR168a, sly-MIR168b, mtr-MIR169i, mtr-MIR172d, mtr-MIR397, mtr-MIR169l, mtr-MIR399s, mtr-MIR399t, stu-MIR7980a, stu-MIR7983, stu-MIR8007a, stu-MIR8007b, stu-MIR7980b, stu-MIR399a, stu-MIR399b, stu-MIR399c, stu-MIR399d, stu-MIR399e, stu-MIR399f, stu-MIR399g, stu-MIR399h, stu-MIR3627, stu-MIR171b, stu-MIR166a, stu-MIR166b, stu-MIR166c, stu-MIR166d, stu-MIR171a, stu-MIR171c, stu-MIR399i, stu-MIR827, stu-MIR172b, stu-MIR172c, stu-MIR172a, stu-MIR172d, stu-MIR172e, stu-MIR156a, stu-MIR156b, stu-MIR156c, stu-MIR156d, stu-MIR171d, stu-MIR167c, stu-MIR167b, stu-MIR167a, stu-MIR167d, stu-MIR399j, stu-MIR399k, stu-MIR399l, stu-MIR399m, stu-MIR399n, stu-MIR399o, stu-MIR393, stu-MIR398a, stu-MIR398b, stu-MIR396, stu-MIR408a, stu-MIR408b, stu-MIR397, stu-MIR171e, stu-MIR156e, stu-MIR156f, stu-MIR156g, stu-MIR156h, stu-MIR156i, stu-MIR156j, stu-MIR156k, stu-MIR169a, stu-MIR169b, stu-MIR169c, stu-MIR169d, stu-MIR169e, stu-MIR169f, stu-MIR169g, stu-MIR169h, sly-MIR403, sly-MIR166c, sly-MIR156d, sly-MIR156e, sly-MIR396a, sly-MIR167b, sly-MIR482d, sly-MIR169e, sly-MIR396b, sly-MIR171e, sly-MIR172c, sly-MIR408, sly-MIR172d, sly-MIR827, sly-MIR393, sly-MIR398a, sly-MIR399b, sly-MIR6025, sly-MIR169f, sly-MIR171f
The reads number for these known miRNAs also varied to a large extent ranging from 1 to 363294, with miR166, miR156, and miR168 families having the most abundant reads in the two libraries. [score:1]
Five miRNA families (miR399, miR156, miR166, miR171, and miR172) had more than 10 members, and miR156 family, the largest family, had 23 members. [score:1]
[1 to 20 of 2 sentences]
99
[+] score: 2
Similar successes have been reported in switchgrass using maize Corngrass1 miRNA [10] and rice miRNA156 [9] resulting in improved saccharification efficiency by altering developmental phase changes. [score:2]
[1 to 20 of 1 sentences]
100
[+] score: 2
Arabidopsis miR172, miR159, miR156 and miR171 regulate flowering time and floral patterning [2], [7], [8]. [score:2]
[1 to 20 of 1 sentences]