sort by

34 publications mentioning ath-MIR169k

Open access articles that are associated with the species Arabidopsis thaliana and mention the gene name MIR169k. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 158
Recent studies also suggest the involvement of miR169 -dependent NF-YA regulation in response to nutrient stress, since some members of this microRNA family are down-regulated by nitrate and phosphate starvation [15] and the expression of some genes encoding NF-YA subunits is up-regulated by phosphate (Pi) and nitrate deprivation as well as during leaf senescence [16]– [18]. [score:10]
To identify genes regulated by NF-YAs while avoiding the potential indirect effects in gene expression related to the dwarf phenotype caused by constitutive NF-YA expression, we used the XVE inducible system (LexA-VP16-estrogen receptor) [30], [31] to drive the expression of miR169-resistant forms of NF-YA2, 3, 10 and the native form of NF-YA7 or the genomic region comprising the mir169nm. [score:9]
Analysis of the microarray data of PXVE:NF-YA lines using the web-tool Superviewer [32], showed that the expression of stress-related genes is modulated by the NF-Y/miR169 system, since these genes were down-regulated as a consequence of NF-YA overexpression and induced in the PXVE:miR169nm line (Figure 6). [score:8]
The relatively mild phenotype observed for the miR169 overexpressing lines could be explained by the fact that repression of NF-YAs containing the miR169 target sequences is incomplete and/or because the expression of NF-YA7 is not affected. [score:7]
Since the expression of several members of the Arabidopsis miR169 family is repressed by low Pi and low N [15], and NF-YA5 is a target for this microRNA family [14], it was important to determine whether the expression of the miR169 family is altered by the same nutrient stress conditions under which NF-YAs mRNA levels increased. [score:7]
In WT plants growing under non-stress conditions, the expression of NF-YAs is low due miR169 -mediated post-transcriptional down-regulation, but sufficient to activate the transcription of CCAAT-box containing promoters. [score:6]
0048138.g011 Figure 11In WT plants growing under non-stress conditions, the expression of NF-YAs is low due miR169 -mediated post-transcriptional down-regulation, but sufficient to activate the transcription of CCAAT-box containing promoters. [score:6]
In Arabidopsis, 10 NF-YA, 13 NF-YB and 13 NF-YC genes encode the different subunits of NF-Y. The expression of NF-YA family members in Arabidopsis has been reported to be regulated at the transcriptional level [12], [13] and some NF-YA family members, such as NF-YA2 and NF-YA5, are targets of the miR169 family [13], [14]. [score:6]
In agreement with the importance of a post-transcriptional mechanism, the expression of miR169 family members showed an inverse expression pattern in response to the same stress conditions that promote an increase in the NF-YA transcript levels. [score:5]
Indeed, Arabidopsis NF-YA5, which is involved in drought tolerance [13], is a target for miR169 and miR169 overexpressing (OE) lines showed a similar phenotype to nf-ya5 [13], demonstrating the participation of this microRNA in drought stress responses. [score:5]
qRT-PCR analysis showed that transcript levels of NF-YA2, 3, 5 and 10 were reduced in both miR169/OE lines, whereas transcript levels for NF-YA7, which lacks the target site for miR169, were unaffected by the overexpression of miR169 (Figure S2B). [score:5]
Changes in NF-YA mRNA levels and miRNA169 abundance fit well with the classical behavior of miRNAs and their targets showing an inverse pattern of expression in which the NF-YA transcript level increases as the corresponding miR169 decreases. [score:5]
The fact that the mir169 family comprises 14 members in Arabidopsis thaliana [14] suggests a scenario in which a complex set of regulatory combinations between several NF-YA transcripts and the numerous members of the mir169 family might control the expression of diverse groups of genes in response to developmental and/or environmental cues. [score:5]
These results suggest that NF-YA overexpression has a mainly negative effect on gene expression and that this repressor activity is modulated by miR169. [score:5]
Estradiol-inducible NF-YA and miRNA169 overexpressing lines were used to analyze the effect of NF-YAs and miR169 overexpression on global RNA profiles. [score:5]
Analysis of NF-YAs in hen1-1 and in miR169/OE lines revealed that a post-transcriptional component participates in regulating the expression of Arabidopsis NF-YA2, 3, 5 and 10. [score:4]
Because of high sequence identity quantification was made for two groups of miR169, a to g and h to n. Expression level of ACT2 was used as internal reference. [score:3]
0048138.g002 Figure 2Expression profile of mature miR169 Arabidopsis in seedlings exposed to different stress conditions. [score:3]
0048138.g003 Figure 3Temporal and Spatial Expression Patterns of miR169 gene and NF-YA10 in response to Pi availability. [score:3]
Upon exposure to abiotic stress, NF-YA levels increase due to the transcriptional activation of NF-YA expression (early) and to the repression of miR169 (late). [score:3]
Reduction in miR169 expression was more pronounced after 14 days of treatment, correlating with the increase in NF-YA transcript levels in response to the same treatments. [score:3]
Expression profile of mature miR169 Arabidopsis in seedlings exposed to different stress conditions. [score:3]
This fact could be due to, the qRT-PCR analysis we used to assess miR169 levels is only able to detect subgroups of several mature miR169s but does not have specificity to detect subtle changes in the expression of a single member of the miR169 family. [score:3]
Temporal and Spatial Expression Patterns of miR169 gene and NF-YA10 in response to Pi availability. [score:3]
Besides the mir169- NF-YA regulatory mechanism, several studies have highlighted the importance of the NF-Y complex in plant developmental processes. [score:3]
Overexpression of Arabidopsis NF-YA4 causes growth reduction [19]; while mimicry lines, with a reduced level of miR169 and increased NF-YA transcript levels, display reduced growth [20]. [score:3]
At least other six Arabidopsis NY-FA transcripts are predicted to be targets of mir169 [14]. [score:3]
Mechanistically our hypothetical mo del proposes that in WT plants growing under non stress conditions, NF-YAs expression is low, due to the presence of high levels of miR169, but sufficient to activate the transcription of CCAAT-box containing promoters. [score:3]
NF-YA overexpression causes a dwarf phenotypeTo characterize the functional role of NF-YAs, we produced transgenic plants that express miR169-resistant versions of NF-YA2, 3 and 10 genes and the native form of the NF-YA7 gene, under the control of the CaMV 35S promoter. [score:3]
To confirm that miR169 modulates the level of NF-YA2, 3, 5, and 10 mRNAs, we generated transgenic Arabidopsis lines that overexpress the mature sequence of miR169 h to n, which is identical for all these miRNAs. [score:3]
Despite no clear change in expression level was observed for the miR169 subgroups under high salinity conditions, we cannot exclude the possibility that one or few specific members of the miR169 family could be controlling the low but consistent increase in transcript levels detected for NF-YA3 and NF-YA5 at 4 and 14 dag (Figure 1). [score:3]
For P35S::NF-YA constructs the coding sequence of NF-YA3, 10 and 7 was amplified with the primers indicated (Table S8) in order to remove the miR169 target site located at the 3′UTR. [score:2]
Since HEN1 is involved in transferring a methyl group to the 3′ end of miRNAs that confers stability to the mature miRNA [28], we expect that, in the mutant, the amount of mature miR169 is reduced leading to an increase in the uncleaved NF-YA mRNAs. [score:1]
Total RNA was extracted after 4, 8 and 14 days of treatment and transcript levels for miR169 determined by qRT-PCR. [score:1]
Northern Blot analysis showed that the level of miR169 decreases in WT seedlings subjected to Pi-deprivation for 8 and 14 days, whereas in hen1-1 the level of mature miR169 was undetectable in both high and low Pi media (Figure 3A). [score:1]
We also produced promoter:GUS transcriptional gene fusions for some of the miR169 family members, namely miR169i/j, miR169k/l, miR169m/n, which are arranged in tandem, and for miR169h and miR169a which are monocistronic units. [score:1]
Another biological process that depends on the mir169- NF-YA interaction is plant growth. [score:1]
Sequence data from this article can be found in the EMBL/GenBank data libraries under the following accession numbers: NF-YA2 (At3g05690), NF-YA3 (At1g72830), NF-YA5 (At1g54160), NF-YA7 (At1g30500), NF-YA10 (At5g06510), SPX1 (At5g20150), HEN1 (At4g20910), MIR169a (At3g13405), MIR169h (At1g19371), MIR169i (At3g26812), MIR169j (At3g26813), MIR169k (At3g26815), MIR169l (At3g26816), MIR169m (At3g26818), MIR169n (At3g26819), MIR156g (At2g19425), MIR164a (At2g47585), MIR164b (At5g01747), MIR164c (At5g27807), ACTIN 2 (At3g18780). [score:1]
For miR169a, miR169h, miR169i/j, miR169k/l and miR169m/n promoter fusions, the promoter sequence immediately upstream to the predicted precursor sequences was amplified and cloned using the protocol mentioned above, except for miR169a which was cloned in the pCR8/GW/TOPO (Invitrogen) vector instead of pDONR221 (Invitrogen). [score:1]
Upon exposure to abiotic stress, NF-YA levels increase due to their transcriptional activation and to the reduction in miR169 levels. [score:1]
To characterize the functional role of NF-YAs, we produced transgenic plants that express miR169-resistant versions of NF-YA2, 3 and 10 genes and the native form of the NF-YA7 gene, under the control of the CaMV 35S promoter. [score:1]
Moreover, we found that P35S:NF-YA2 plants had a 2-fold higher Suc content than WT whereas miR169/OE lines showed a 20% reduction (Table S2). [score:1]
In contrast, transcript levels for NF-YA7, which lacks the binding site for miR169, was similar in hen1-1 to that present in WT seedlings (Table 1). [score:1]
A more specific analysis was not possible because of the high identity between the mature miR169 sequences. [score:1]
Membranes containing low molecular weight RNA were probed with U6 small nucleolar RNA, miR169 and miR156 oligonucleotides (Table S8) end-labeled in the presence of [γ- [32]P] ATP. [score:1]
[1 to 20 of 45 sentences]
2
[+] score: 54
miR169 expression is induced in rice and Arabidopsis under drought [51] and salt stress [52] and down-regulation of their target genes resulted in tolerance to these environmental stresses. [score:8]
The sequencing analysis showed that in both callus and leaf tissues, various stress regulated-miRNAs were differentially expressed and real time PCR validated the expression profile of miR156, miR158, miR159, miR169, miR393, miR398, miR399 and miR408 along with their target genes. [score:8]
In both callus and leaf tissues, four miRNAs (miR156, miR169, miR398 and miR408) were up-regulated, two miRNAs (miR158, and miR393) were down-regulated with two other miRNAs (miR159 and miR396) only found in the callus tissue (Figure  5A, B). [score:7]
Based on these reports and from the qPCR results, the up-regulation of miR169, by decreasing the levels of the nuclear factor Y family, might contribute to the LPS -induced responses in A. thaliana since the down-regulation of some genes could also be very important for plants to overcome abiotic/biotic stresses. [score:7]
miR169 was induced in both callus and leaf tissues as revealed by the H-T sequencing results (Tables  1 and 2) and the expression profile was validated by qPCR which showed significant up-regulation in both tissues (Figure  5A, B). [score:6]
In total about 86 targets genes were predicted among which most of them encode transcription factors (TFs) targeted by miR156, miR159, miR165, miR166, miR169, miR319, miR408, miR829, miR2934, miR5029 and miR5642. [score:5]
The expression data was then compared against the H-T sequencing data analysis which revealed that five (miR156, miR169, miR398, miR399 and miR408) of the nine miRNAs in callus tissue and six (miR158, miR159, miR169, miR393, miR396 and miR408) of the nine miRNAs in leaf tissue showed expression patterns that were similar to those observed with the H-T sequencing data. [score:4]
To validate the sequencing results with the bioinformatics -based analysis and based on their key function in gene regulation, the following mature miRNA were selected for expression profile analysis: miR156, mi158, miR159, miR169, miR393, miR396, miR398, miR399 and miR408. [score:4]
Experimental studies in Arabidopsis and other plants have shown that abiotic and biotic stresses induce differential expression of a set of miRNAs such as: miR156, miR159, miR165, miR167, miR168, miR169, miR319, miR393, miR395, miR396, miR398, miR399, and miR402 [7, 18- 23]. [score:3]
are regulated by the identified miR156, miR159, miR165, miR166, miR169, miR319, miR408, miR829, miR2934, miR5029 and miR5642 (Tables  3 and 4). [score:2]
[1 to 20 of 10 sentences]
3
[+] score: 37
miR169 plays an important role in regulating nodule development in M. truncatula and its over -expression leads to decreased expression of the MtHAP2-1 (HAPLESS 2-1) gene and a deficient N-fixation phenotype [16]. [score:7]
Plants overexpressing miR169 accumulated less N and were more sensitive to N starvation [17]. [score:3]
Differential expression of different miR169 species. [score:3]
In Arabidopsis, N starvation decreased the expression of miR169. [score:3]
Deep sequencing analyses also suggested that miR169, miR395, and miR398 were expressed at low levels under P -deficient conditions [12]. [score:3]
Unlike most miRNA families whose members show similar expression patterns, the different species of the miR169 family showed differential responses to N starvation (Table S2). [score:3]
Meanwhile, over -expression of miR169 impairs the N-uptake system, leading to low N accumulation in Arabidopsis [17]. [score:3]
For miR156, miR160, miR169, miR171, miR172, miR395, miR397, miR398, miR399, miR408, miR775, miR780.1, miR827, miR842, miR846, miR857, and miR2111, their targets have been predicted and most of them were validated previously (Table 2). [score:3]
In M. truncatula, miR169 plays a role in regulating nodule development [16]. [score:3]
Similar trends were observed for other miRNA families, such as miR156, miR169, and miR172. [score:1]
miR169 is a conserved plant miRNA that is found in diverse plant species. [score:1]
Consistent with the sequencing results, miR169d–g, but not the other miR169 species, increased specifically upon N starvation. [score:1]
Recently, several miRNAs were identified to be responsive to N limitation in Arabidopsis, which includes miR156, miR167, miR169, and miR398 [13], [17]. [score:1]
0048951.g002 Figure 2(A) Four different mature miR169 species. [score:1]
The Arabidopsis miR169 gene family contains 14 members, represented by four different mature miRNA species; miR169a, miR169bc, miR169d–g, and miR169h–n (Figure 2A). [score:1]
[1 to 20 of 15 sentences]
4
[+] score: 31
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR157d, ath-MIR158a, ath-MIR159a, ath-MIR160a, ath-MIR160b, ath-MIR160c, ath-MIR161, ath-MIR162a, ath-MIR162b, ath-MIR163, ath-MIR164a, ath-MIR164b, ath-MIR165a, ath-MIR165b, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR167a, ath-MIR167b, ath-MIR169a, ath-MIR170, ath-MIR172a, ath-MIR172b, ath-MIR173, ath-MIR159b, ath-MIR319a, ath-MIR319b, ath-MIR167d, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR171b, ath-MIR172c, ath-MIR172d, ath-MIR391, ath-MIR395a, ath-MIR395b, ath-MIR395c, ath-MIR395d, ath-MIR395e, ath-MIR395f, ath-MIR397a, ath-MIR397b, ath-MIR398a, ath-MIR398b, ath-MIR398c, ath-MIR399a, ath-MIR399b, ath-MIR399c, ath-MIR399d, ath-MIR399e, ath-MIR399f, ath-MIR400, ath-MIR408, ath-MIR156g, ath-MIR156h, ath-MIR158b, ath-MIR159c, ath-MIR319c, ath-MIR164c, ath-MIR167c, ath-MIR172e, ath-MIR447a, ath-MIR447b, ath-MIR447c, ath-MIR773a, ath-MIR775, ath-MIR822, ath-MIR823, ath-MIR826a, ath-MIR827, ath-MIR829, ath-MIR833a, ath-MIR837, ath-MIR841a, ath-MIR842, ath-MIR843, ath-MIR845a, ath-MIR848, ath-MIR852, ath-MIR824, ath-MIR854a, ath-MIR854b, ath-MIR854c, ath-MIR854d, ath-MIR857, ath-MIR864, ath-MIR2111a, ath-MIR2111b, ath-MIR773b, ath-MIR841b, ath-MIR854e, ath-MIR833b, ath-MIR156i, ath-MIR156j, ath-MIR826b
Both downregulation of miR169 by –N and upregulation of miR395 by –S were consistent with previous reports, confirming the reliability of the sequencing data. [score:7]
A previous study revealed that –N specifically upregulated miR169d–g, but not other miR169 species 21. [score:4]
Interestingly, the total number of miR169 mature sequences was also downregulated by –S (Supplemental Table 2). [score:4]
In contrast, –S and –P suppressed nearly all miR169 species. [score:3]
There are one or two nucleotide differences between miR169 species, implying that different miR169 mature sequences may have different target genes, as described in a recent study, which confirmed that miR157d, but not other species of the miR156/157 family, mediated the cleavage of the HY5 mRNA 55. [score:3]
miR169 was repressed by –N and regulated nitrogen homeostasis in Arabidopsis 25. [score:2]
Although there have been no reports about –C-responsive miRNAs, previous studies on –N and –S-responsive miRNAs showed that miR169 and miR395 are negatively and positively responsive to –N and –S, respectively 21 25. [score:1]
Despite the implication of miR169 in N starvation response, miR169b/c was induced specifically by –C, implying that miR169b/c plays a particular role in C starvation response. [score:1]
Notably, different miR169 members showed differential responses to –C, –N, and –S, as well as to –P (Supplemental Table 2 and 5). [score:1]
Similar cases also occurred in the miR169 family and others. [score:1]
Further discussion on miR169 is provided below. [score:1]
With other miR169 species unaffected or reduced, miR169b/c was dramatically induced by –C. [score:1]
A similar repression of miR169 was observed under –P conditions in Arabidopsis 28. [score:1]
These observations suggested that miR169 might not only have a specific function in nitrogen homeostasis, but also in S and P metabolism. [score:1]
[1 to 20 of 14 sentences]
5
[+] score: 28
Expression of (a) NF-YA8 -target of miR169; (b) PPR superfamily- target of miR161.1; (c) PHO2- target of miR399; (d) AGL16- target of miR824; (e) CIP4.1 or CIP4- target of miR834; (f) R3H- target of miR854. [score:15]
For miR169, we validated the expression of two targets - NF-YA5 (NUCLEAR FACTOR Y, SUBUNIT A5) and NF-YA8. [score:5]
The miR169 targets members of the Arabidopsis NF-YA gene family [40]. [score:3]
Analysis of the data showed that amongst the differently expressed miRNAs, most abundant families were miR169 and miR854, with 11 and 5 family members, respectively (Fig.   1e). [score:3]
The miR169 family is the largest miRNA family in Arabidopsis and is encoded by 14 members [39]; however, only a few members have been annotated with specific functions. [score:1]
Xu MY Stress -induced early flowering is mediated by miR169 in Arabidopsis thalianaJournal of Experimental Botany 2013 40. [score:1]
[1 to 20 of 6 sentences]
6
[+] score: 24
The reductions in mature miR169 accumulation due to inefficient PRI-MIR169A processing observed in drb2, drb23, drb25 and drb235 plants was in turn demonstrated to result in deregulated target gene expression with NFYA5 levels elevated in all four of these plant lines lacking DRB2 activity (Figures 2C and S3A). [score:6]
RT-PCR assessment of PRI-MIR169A expression showed that the observed reduction to miR169 accumulation in drb1 and drb2 plants was a result of inefficient precursor transcript processing. [score:3]
In accordance with miR169 levels, PRI-MIR169A expression was elevated in both of these drb mutant plants to suggest that DRB1 and DRB2 are required for DCL1-catalyzed processing of the precursor transcripts of MIR169 family members. [score:3]
Failure to detect a miR169 signal by northern blotting and detection of further elevated PRI-MIR169A and NFYA5 expression in the drb12 double mutant by RT-PCR confirmed that DRB2 activity in addition to DRB1 function is required for the biogenesis of a subset of miRNAs in the SAM region of Arabidopsis plants. [score:3]
As demonstrated for miR164 and miR169, Figure S3B shows that the levels of two additional miRNAs, specifically miR841 and miR170 (Table 1), are elevated and reduced respectively in the absence of DRB2 expression (Figure S3A). [score:3]
RT-PCR analysis of drb1, drb2 and drb12 plants revealed that the observed changes to miR164 and miR169 levels in these three mutant lines was a result of alterations to precursor transcript processing efficiency (Figure 4). [score:1]
The Arabidopsis miR169 family consists of 14 members and our sRNA sequencing revealed miR169a to be the most prevalent of the five family members detected (Table S1). [score:1]
RT-PCR analysis suggested that the observed reductions in miR169 accumulation in drb2, drb23, drb25 and drb235 plants was a result of inefficient primary transcript processing with higher levels of PRI-MIR169A detected in all four of these DRB2 deficient backgrounds (Figure 2C). [score:1]
As demonstrated for the elevated class of miRNAs, accumulation of the drb235 reduced miRNA class representative, miR169 was associated with the loss of DRB2 activity (Figure S3A). [score:1]
The accumulation of the drb235 reduced miRNA class representative, miR169 was reduced in all three drb mutant backgrounds analyzed. [score:1]
The detection of even higher levels of precursor transcript, in combination with the failure to detect miR169 by northern blotting, in drb12 plants strongly indicated that the activity of both DRB family members is a requirement for miRNA biogenesis in the SAM region of Arabidopsis plants. [score:1]
[1 to 20 of 11 sentences]
7
[+] score: 18
While the expressions of 14 families (miR156/miR157, miR158, miR160, miR162, miR165/miR166, miR168, miR169, miR171, miR390, miR393, miR394, miR396, miR398, and miR399) were dramatically reduced, 3 families (miR159, miR167, and miR172) were up-regulated in CsCl -treated seedlings. [score:6]
Although they were expressed at very different frequencies, the overall reduction in the expression of miR169 genes was observed in both CsCl -treated (3-fold) and KCl -treated seedlings (3.5-fold) (Fig 3B, number 29). [score:5]
A group of highly conserved miRNAs includes miR159, miR169, miR172, miR173, and miR394 are differentially expressed under Fe-deficiency and many miRNAs harbor IDE1/IDE2 motifs, Fe-deficiency responsive cis-acting elements, in their promoters [24]. [score:3]
The miR169 family contains 14 genes (miR169a - miR169n) and mainly functions in regulating plant responses against salt and drought stresses [31– 33]. [score:2]
In the case of KCl treatment, the miRNA counts of 4 families (miR156/miR157, miR169, miR394, and miR399) were reduced, whereas 9 families (miR159, miR164, miR165/miR166. [score:1]
Several miRNA families were significantly lower in both CsCl -treated and KCl -treated seedlings (miR156, miR169, miR170/miR171, and miR399). [score:1]
[1 to 20 of 6 sentences]
8
[+] score: 11
miR160 as well as miR169 in rice showed differential expression in roots and shoots under heat stress, suggesting the different regulation of the target genes by heat in this two different tissues (Sailaja et al., 2014). [score:6]
The expression of most members in miR169, 171, 395, and 827 families have not been experimentally validated, and their targets remain largely unknown (Table 2). [score:5]
[1 to 20 of 2 sentences]
9
[+] score: 11
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR159a, ath-MIR160a, ath-MIR160b, ath-MIR160c, ath-MIR162a, ath-MIR162b, ath-MIR164a, ath-MIR164b, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR167a, ath-MIR167b, ath-MIR168a, ath-MIR168b, ath-MIR169a, ath-MIR172a, ath-MIR172b, ath-MIR159b, osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, ath-MIR167d, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR172c, ath-MIR172d, ath-MIR395a, ath-MIR395b, ath-MIR395c, ath-MIR395d, ath-MIR395e, ath-MIR395f, ath-MIR396a, ath-MIR396b, ath-MIR399a, ath-MIR399b, ath-MIR399c, ath-MIR399d, ath-MIR399e, ath-MIR399f, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, ath-MIR408, ath-MIR156g, ath-MIR156h, ath-MIR159c, ath-MIR164c, ath-MIR167c, ath-MIR172e, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR408, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR162, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, osa-MIR396e, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR396b, zma-MIR396a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171h, zma-MIR408a, zma-MIR156k, zma-MIR160f, osa-MIR529a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR529b, osa-MIR169r, osa-MIR396f, zma-MIR396c, zma-MIR396d, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR2275a, osa-MIR2275b, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, osa-MIR396g, osa-MIR396h, osa-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR408b, zma-MIR529, osa-MIR395x, osa-MIR395y, osa-MIR2275c, osa-MIR2275d, ath-MIR156i, ath-MIR156j
For instance, miR169 targeted seven different CCAAT -binding transcription factors in the four stages (category 0 or 2) with very high abundance, but it also guided the slicing of three other non-conserved targets with very low abundance. [score:5]
Four identified targets of miRs4 (category 0 or 2) were the same as those of miR169, providing further evidence that miRs4 is a member of the miR169 family. [score:3]
Click here for file The sequence conservation of mature miRNAs between members of known miR169 family and miRs4. [score:1]
The sequence conservation of mature miRNAs between members of known miR169 family and miRs4. [score:1]
The sequence of miRs4 was similar to that of members of the miR169 family (Additional file 7), indicating that miRs4 may be a member of that family. [score:1]
[1 to 20 of 5 sentences]
10
[+] score: 10
Downregulation of miR169 can lead to NF-YA upregulation under very specific environmental conditions, such as drought or nitrogen starvation [21], [77]. [score:7]
In Arabidopsis the accumulation of most NF-YA transcripts is regulated by the micro RNA miR169 [76]. [score:2]
Based on the conservation of miR169 in Brachypodium [78], it is likely that similar mechanisms control the accumulation of BdNF-YA mRNA and protein. [score:1]
[1 to 20 of 3 sentences]
11
[+] score: 10
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR159a, ath-MIR169a, ath-MIR159b, osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR169a, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR391, ath-MIR156g, ath-MIR156h, ath-MIR159c, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, gma-MIR156d, gma-MIR156e, gma-MIR156c, gma-MIR159a, gma-MIR156a, gma-MIR156b, gma-MIR169a, osa-MIR535, ath-MIR781a, ath-MIR782, ath-MIR847, osa-MIR169r, gma-MIR159b, gma-MIR159c, gma-MIR169b, gma-MIR169c, osa-MIR1846d, osa-MIR1857, osa-MIR1846a, osa-MIR1846b, osa-MIR1846c, osa-MIR1846e, ath-MIR2112, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, gma-MIR391, gma-MIR156f, gma-MIR169d, gma-MIR169e, gma-MIR156g, gma-MIR159d, gma-MIR156h, gma-MIR156i, gma-MIR169f, gma-MIR169g, gma-MIR2118a, gma-MIR2118b, gma-MIR169h, gma-MIR169i, gma-MIR156j, gma-MIR156k, gma-MIR156l, gma-MIR156m, gma-MIR156n, gma-MIR156o, gma-MIR159e, gma-MIR159f, gma-MIR169j, gma-MIR169k, gma-MIR169l, gma-MIR169m, gma-MIR169n, ath-MIR781b, ath-MIR156i, ath-MIR156j, gma-MIR156p, gma-MIR156q, gma-MIR169o, gma-MIR169p, gma-MIR156r, gma-MIR156s, gma-MIR169r, gma-MIR169s, gma-MIR156t, gma-MIR169t, gma-MIR169u, gma-MIR156u, gma-MIR156v, gma-MIR156w, gma-MIR156x, gma-MIR156y, gma-MIR156z, gma-MIR156aa, gma-MIR156ab, gma-MIR169v, gma-MIR169w
The targets were annotated as Nuclear Factor Y (NFY), which were previously shown to be targeted by miR169 in Arabidopsis [26], [27]. [score:5]
Although only a few cleavage targets of the highly accumulated RC-miRNAs were detected, several RC-miRNAs were shown to possess great potential to guide DNA methylation in both Arabidopsis (RC_ath-miR2112, RC_ath-miR391, RC_ath-miR781, RC_ath-miR782, and RC_ath-miR847) and rice (RC_osa-miR156, RC_osa-miR159, RC_osa-miR169, RC_osa-miR1846, RC_osa-miR2118, and RC_osa-miR535) (Figure 4 and Table S6). [score:3]
However, it is hard to tell that either RC-osa-miR169 or osa-miR169, or both exert their cleavage -based regulatory roles. [score:2]
[1 to 20 of 3 sentences]
12
[+] score: 9
Under drought stress, miR167, miR393 and miR396 are upregulated, miR169 is downregulated and miR398 is differentially regulated [17]. [score:8]
In Arabidopsis, miR156, miR158, miR159, miR165, miR167, miR168, miR169, miR171, miR319, miR393, miR394 and miR396 are drought-responsive. [score:1]
[1 to 20 of 2 sentences]
13
[+] score: 9
Two constructs were used to downregulate different subfamilies of miR169 family, whose main targets are HAP transcription factors. [score:6]
The mature miRNAs produced by members of the miR169 and miR171 families differ slightly, and different target mimics were designed for these subfamilies. [score:3]
[1 to 20 of 2 sentences]
14
[+] score: 9
At least six other miR169 targets were predicted to exist in the AtNF-YA family [24]. [score:3]
In rice, an NF-YA gene (Os03g29760) known to be a target of the miR169 family was found to be induced by high salinity [14]. [score:3]
In addition, several members of the NF-Y family were shown to be regulated by the microRNA169 (miR169) family, suggesting that a complex regulatory cascade is activated under stress conditions [13], [14], [23]. [score:3]
[1 to 20 of 3 sentences]
15
[+] score: 6
One of the central players in the network, FLOWERING LOCUS C (FLC) (UniProt: Q9S7Q7), a transcription factor that controls flowering time in response to temperature [36], is indirectly regulated by miR169 via the NFYA transcription factor and is a direct substrate of four MAPKs. [score:4]
However, the remaining two miRNAs, miR159 and miR169, are part of a complex transcriptional regulatory network that includes several kinases, including multiple members of the mitogen activated protein kinase (MAPK) and calcium dependent protein kinase (CDPK) families (Fig 5A). [score:2]
[1 to 20 of 2 sentences]
16
[+] score: 6
It was reported that NF-YA genes are the target of the microRNA169 [52, 58], but it is not known whether miR169 regulates their expression at onset of tomato fruit ripening. [score:6]
[1 to 20 of 1 sentences]
17
[+] score: 6
The mature miRNAs 1, 2, 4, and 5 have high complementarity to transcription factor encoding mRNAs targeted by MIR166 and MIR169 miRNAs [18], [21] (Table 4); however mature miRNAs 2, 4 and 5 have predicted novel target cleavage sites within these transcripts. [score:5]
Three of the five mature miRNAs (miRNAs 3, 4, and 5) are encoded by two MIR169 genes on chromosomes 3 and 5 (Table 2). [score:1]
[1 to 20 of 2 sentences]
18
[+] score: 5
NF-YA5 could specifically bind to miR169, which targets mRNAs for cleavage or translational repression at multiple cellular processes [24]. [score:5]
[1 to 20 of 1 sentences]
19
[+] score: 3
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR169a, ath-MIR171a, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR171b, ath-MIR171c, ath-MIR395a, ath-MIR395b, ath-MIR395c, ath-MIR395d, ath-MIR395e, ath-MIR395f, ath-MIR396a, ath-MIR396b, ath-MIR399a, ath-MIR408, ath-MIR156g, ath-MIR156h, gma-MIR156d, gma-MIR156e, gma-MIR156c, gma-MIR166a, gma-MIR166b, gma-MIR156a, gma-MIR396a, gma-MIR396b, gma-MIR156b, gma-MIR169a, ath-MIR848, gma-MIR169b, gma-MIR169c, gma-MIR171a, gma-MIR171b, gma-MIR1527, gma-MIR1533, gma-MIR396c, pvu-MIR166a, pvu-MIR399a, gma-MIR396d, gma-MIR156f, gma-MIR169d, gma-MIR171c, gma-MIR169e, gma-MIR156g, gma-MIR396e, gma-MIR156h, gma-MIR156i, gma-MIR166c, gma-MIR166d, gma-MIR166e, gma-MIR166f, gma-MIR166g, gma-MIR166h, gma-MIR169f, gma-MIR169g, gma-MIR171d, gma-MIR171e, gma-MIR171f, gma-MIR171g, gma-MIR408d, ath-MIR5021, gma-MIR171h, gma-MIR171i, gma-MIR169h, gma-MIR169i, gma-MIR396f, gma-MIR396g, gma-MIR171j, gma-MIR395a, gma-MIR395b, gma-MIR395c, gma-MIR408a, gma-MIR408b, gma-MIR408c, gma-MIR156j, gma-MIR156k, gma-MIR156l, gma-MIR156m, gma-MIR156n, gma-MIR156o, gma-MIR166i, gma-MIR166j, gma-MIR169j, gma-MIR169k, gma-MIR169l, gma-MIR169m, gma-MIR169n, gma-MIR171k, gma-MIR396h, gma-MIR396i, gma-MIR171l, ath-MIR156i, ath-MIR156j, gma-MIR399a, gma-MIR156p, gma-MIR171m, gma-MIR171n, gma-MIR156q, gma-MIR171o, gma-MIR169o, gma-MIR171p, gma-MIR169p, gma-MIR156r, gma-MIR396j, gma-MIR171q, gma-MIR156s, gma-MIR169r, gma-MIR169s, gma-MIR396k, gma-MIR166k, gma-MIR156t, gma-MIR171r, gma-MIR169t, gma-MIR171s, gma-MIR166l, gma-MIR171t, gma-MIR171u, gma-MIR395d, gma-MIR395e, gma-MIR395f, gma-MIR395g, gma-MIR166m, gma-MIR169u, gma-MIR156u, gma-MIR156v, gma-MIR156w, gma-MIR156x, gma-MIR156y, gma-MIR156z, gma-MIR156aa, gma-MIR156ab, gma-MIR166n, gma-MIR166o, gma-MIR166p, gma-MIR166q, gma-MIR166r, gma-MIR166s, gma-MIR166t, gma-MIR166u, gma-MIR169v, gma-MIR395h, gma-MIR395i, gma-MIR395j, gma-MIR395k, gma-MIR395l, gma-MIR395m, gma-MIR169w
Calvino and Messing [68] established that miR169 family in Sorghum targets the carboxypeptidase mRNAs. [score:3]
[1 to 20 of 1 sentences]
20
[+] score: 3
Combier JP Frugier F de Billy F Boualem A El-Yahyaoui F Moreau S MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatulaGenes Dev. [score:3]
[1 to 20 of 1 sentences]
21
[+] score: 3
Such substitutions were found in miR169 (site 14) and miR319 (site 7) (Table 3). [score:1]
04)>GCU(76.99), 5:G(219813.04)>CUA(325.81), 7:U(158835.06)>GCA(466.4), 8:G(158835.06)>CUA(326.2), 9:C(158835.06)>GUA(602.6), 10:C(158835.06)>GU(431.4), 11:A(219826.94)>GCU(3686.02), 12:G(219826.94)>CU(1018.4), 13:C(158835.06)>GU(336.74) MIR168a, MIR168b 9:U(15948.36)>CA(36.6), 10:G(15933.26)>A(24.3), 12:A(15933.26)>GC(22.2), 13:G(15933.26)>UA(43.1), 14:G(15933.26)>UA(41.3) MIR169a, MIR169b, MIR169c, MIR169d, MIR169e, MIR169h, MIR169i, MIR169j, MIR169k, MIR169l, MIR169m, MIR169n 6:C(24472.01)>GU(40.32), 8:A(87930.11)>GCU(77.31), 9:G(58812. [score:1]
We show miRNAs that have the most (miR167; A) and the second most abundant (miR169; B) substitutions. [score:1]
[1 to 20 of 3 sentences]
22
[+] score: 3
NF-YA transcripts are also regulated at post-transcriptional level by the action of microRNA169 (miR169) that binds to the 3’-UTR and promotes their cleavage by the slicing protein Argonaute 1 [4, 8]. [score:2]
Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. [score:1]
[1 to 20 of 2 sentences]
23
[+] score: 3
Based on A. thaliana annotation, miRNA target genes were found for several conserved miRNAs in hybrid yellow poplar (Table S4): ARF10 (miR160), CYP96A1 (miR162), NAC (miR164), PHB and DNA -binding factor (miR165/166), NF-YA8 (miR169), SCARECROW transcription factor family protein (miR170/171), SNZ (miR172), MYB (miR319), GRF (miR396), copper ion binding (miR408), SPL11 (miR529) etc. [score:3]
[1 to 20 of 1 sentences]
24
[+] score: 3
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR159a, ath-MIR160a, ath-MIR160b, ath-MIR160c, ath-MIR162a, ath-MIR162b, ath-MIR164a, ath-MIR164b, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR167a, ath-MIR167b, ath-MIR169a, ath-MIR171a, ath-MIR172a, ath-MIR172b, ath-MIR159b, osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, ath-MIR167d, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR171b, ath-MIR171c, ath-MIR172c, ath-MIR172d, ath-MIR393a, ath-MIR393b, ath-MIR394a, ath-MIR394b, ath-MIR395a, ath-MIR395b, ath-MIR395c, ath-MIR395d, ath-MIR395e, ath-MIR395f, osa-MIR393a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, ath-MIR156g, ath-MIR156h, ath-MIR159c, ath-MIR164c, ath-MIR167c, ath-MIR172e, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR162, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR394a, zma-MIR394b, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR156k, zma-MIR160f, osa-MIR528, osa-MIR529a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, ath-MIR827, osa-MIR529b, osa-MIR1432, osa-MIR169r, osa-MIR827, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR2275a, osa-MIR2275b, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR482, zma-MIR528a, zma-MIR528b, zma-MIR529, zma-MIR827, zma-MIR1432, osa-MIR395x, osa-MIR395y, osa-MIR2275c, osa-MIR2275d, ath-MIR156i, ath-MIR156j
In comparison to other plant species, tae-miR169b in wheat and osa-miR169 in rice are the most frequently sequenced miRNAs while miR156 in rice and wheat exhibits low abundance [32]. [score:1]
The largest miRNA family size identified was miR166 that consisted of 14 members and miR156, miR169 and miR167 possessed 12, 12 and 10 members, respectively; whereas other miRNA families such as miR162, miR529, miR827 and miR1432 had only one member detected in this period. [score:1]
For example, miR156/157, miR159/319, miR166, miR169, and miR394 have been found in 51, 45, 41, 40 and 40 plant species, respectively [36- 38]. [score:1]
[1 to 20 of 3 sentences]
25
[+] score: 3
In total, we have predicted 10 potential target mimics of Pi starvation responsive miRNAs (miR399, miR156 and miR169). [score:3]
[1 to 20 of 1 sentences]
26
[+] score: 2
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR157a, ath-MIR157b, ath-MIR157c, ath-MIR157d, ath-MIR159a, ath-MIR160a, ath-MIR160b, ath-MIR160c, ath-MIR165a, ath-MIR165b, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR167a, ath-MIR167b, ath-MIR169a, ath-MIR172a, ath-MIR172b, ath-MIR159b, ath-MIR319a, ath-MIR319b, osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, ath-MIR167d, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR172c, ath-MIR172d, ath-MIR394a, ath-MIR394b, ath-MIR396a, ath-MIR396b, osa-MIR394, osa-MIR396a, osa-MIR396b, osa-MIR396c, ath-MIR403, ath-MIR408, ath-MIR156g, ath-MIR156h, ath-MIR159c, ath-MIR319c, ath-MIR167c, ath-MIR172e, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR408, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, ath-MIR414, osa-MIR414, osa-MIR396e, ath-MIR856, ath-MIR858a, osa-MIR169r, osa-MIR396f, ath-MIR2111a, ath-MIR2111b, osa-MIR396g, osa-MIR396h, osa-MIR396d, ath-MIR858b, ath-MIR156i, ath-MIR156j
Most of the miRNA families were found to be conserved in a variety of plant species e. g. using a comparative genomics based strategy homologs of miR319, miR156/157, miR169, miR165/166, miR394 and miR159 were found in 51,45,41,40,40 and 30 diverse plant species respectively [38]. [score:1]
miR156, miR159, miR167, miR319, miR396 and miR172 possessed 5, 8, 10, 8, 7 and 6 members respectively whereas other miRNA families such as miR157, miR160, miR169, miR858, miR894, miR2111 etc. [score:1]
[1 to 20 of 2 sentences]
27
[+] score: 2
Other miRNAs from this paper: ath-MIR159a, ath-MIR162a, ath-MIR162b, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR169a, ath-MIR171a, ath-MIR159b, ath-MIR319a, ath-MIR319b, osa-MIR162a, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR169a, osa-MIR171a, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR171b, ath-MIR171c, ath-MIR390a, ath-MIR390b, ath-MIR396a, ath-MIR396b, ath-MIR398a, ath-MIR398b, ath-MIR398c, ath-MIR399a, ath-MIR399b, ath-MIR399c, ath-MIR399d, ath-MIR399e, ath-MIR399f, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, ath-MIR408, ath-MIR159c, ath-MIR319c, osa-MIR156k, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR162b, osa-MIR166k, osa-MIR166l, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR408, osa-MIR171i, osa-MIR166m, osa-MIR166j, ath-MIR414, osa-MIR414, osa-MIR390, osa-MIR396e, ptc-MIR156k, ptc-MIR159a, ptc-MIR159b, ptc-MIR159d, ptc-MIR159e, ptc-MIR159c, ptc-MIR162a, ptc-MIR162b, ptc-MIR166a, ptc-MIR166b, ptc-MIR166c, ptc-MIR166d, ptc-MIR166e, ptc-MIR166f, ptc-MIR166g, ptc-MIR166h, ptc-MIR166i, ptc-MIR166j, ptc-MIR166k, ptc-MIR166l, ptc-MIR166m, ptc-MIR166n, ptc-MIR166o, ptc-MIR166p, ptc-MIR166q, ptc-MIR169a, ptc-MIR169aa, ptc-MIR169ab, ptc-MIR169ac, ptc-MIR169ad, ptc-MIR169ae, ptc-MIR169af, ptc-MIR169b, ptc-MIR169c, ptc-MIR169d, ptc-MIR169e, ptc-MIR169f, ptc-MIR169g, ptc-MIR169h, ptc-MIR169i, ptc-MIR169j, ptc-MIR169k, ptc-MIR169l, ptc-MIR169m, ptc-MIR169n, ptc-MIR169o, ptc-MIR169p, ptc-MIR169q, ptc-MIR169r, ptc-MIR169s, ptc-MIR169t, ptc-MIR169u, ptc-MIR169v, ptc-MIR169w, ptc-MIR169x, ptc-MIR169y, ptc-MIR169z, ptc-MIR171a, ptc-MIR171b, ptc-MIR171c, ptc-MIR171d, ptc-MIR171e, ptc-MIR171f, ptc-MIR171g, ptc-MIR171h, ptc-MIR171i, ptc-MIR319a, ptc-MIR319b, ptc-MIR319c, ptc-MIR319d, ptc-MIR319e, ptc-MIR319f, ptc-MIR319g, ptc-MIR319h, ptc-MIR319i, ptc-MIR390a, ptc-MIR390b, ptc-MIR390c, ptc-MIR390d, ptc-MIR396a, ptc-MIR396b, ptc-MIR396c, ptc-MIR396d, ptc-MIR396e, ptc-MIR396f, ptc-MIR396g, ptc-MIR398a, ptc-MIR398b, ptc-MIR398c, ptc-MIR399a, ptc-MIR399b, ptc-MIR399d, ptc-MIR399f, ptc-MIR399g, ptc-MIR399h, ptc-MIR399i, ptc-MIR399j, ptc-MIR399c, ptc-MIR399e, ptc-MIR408, ptc-MIR482a, ptc-MIR171k, osa-MIR169r, ptc-MIR171l, ptc-MIR171m, ptc-MIR171j, ptc-MIR1448, osa-MIR396f, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR396g, osa-MIR396h, osa-MIR396d, ptc-MIR482d, ptc-MIR169ag, ptc-MIR482b, ptc-MIR482c, pde-MIR159, pde-MIR162, pde-MIR166a, pde-MIR166b, pde-MIR169, pde-MIR171, pde-MIR390, pde-MIR396, pde-MIR482a, pde-MIR482b, pde-MIR482c, pde-MIR482d, pde-MIR946, pde-MIR947, pde-MIR949a, pde-MIR950, pde-MIR951, pde-MIR952a, pde-MIR952b, pde-MIR952c, pde-MIR1311, pde-MIR1312, pde-MIR1313, pde-MIR1314, pde-MIR3701, pde-MIR3704a, pde-MIR3704b, pde-MIR3712
For example, the pde-MIR482 family has 4 members, whereas only one exists in 19 miRNA families (pde-MIR159, pde-MIR162, pde-MIR169, pde-MIR171, pde-MIR390, pde-MIR396, pde-MIR783, pde-MIR946, pde-MIR947, pde-MIR950, pde-MIR951, pde-MIR1310, pde-MIR1311, pde-MIR1312, pde-MIR1313, pde-MIR1314, pde-MIR1448, pde-MIR3701 and pde-MIR3712). [score:1]
It includes pde-MIR159, pde-MIR162, pde-MIR166, pde-MIR169, pde-MIR171, pde-MIR390, pde-MIR396 and pde-MIR399. [score:1]
[1 to 20 of 2 sentences]
28
[+] score: 2
The annotated pre‑miRNAs of the miR169 family in Arabidopsis were used to construct a phylogenetic tree. [score:1]
For example, the MIR169 family has 14 members in Arabidopsis. [score:1]
[1 to 20 of 2 sentences]
29
[+] score: 2
We also predicted several new miRNAs that are likely to respond to high-salt conditions, including miR418, miR166 [36, 40], miR160 [36, 38], miR841 [41], miR169 [37, 42, 43]. [score:1]
The partial results are shown in Table  5, and the complete results are available in Additional file 5. Table 5 Top 5 prediction results for miRNAs responding to high-salt conditions and TMV-Cg stress Stress miRNA Score High-salt ath-miR418 0.932 ath-miR166 0.929 ath-miR160 0.908 ath-miR841 0.892 ath-miR169 0.816 TMV-Cg ath-miR165 1.000 ath-miR156 0.939 ath-miR418 0.932 ath-miR160 0.908 ath-miR8177 0.899 To our knowledge, most of the existing methods mentioned previously have not been implemented as publicly available software packages. [score:1]
[1 to 20 of 2 sentences]
30
[+] score: 1
Among the 14 miRNAs that produced positive signals in the northern blot hybridizations, two are close paralogs of known miRNAs; miR169b is a paralog of miR169 and miR171b is a paralog of miR170. [score:1]
[1 to 20 of 1 sentences]
31
[+] score: 1
In addition, experiments by Vaucheret and data from other studies also reveals evidence of long miRNA variants; for example, careful examination of previously published miRNA northern blots found the presence of double bands for some miRNAs, such as for ath-miR169, ath-miR156 and ath-miR172 [31]. [score:1]
[1 to 20 of 1 sentences]
32
[+] score: 1
Stress -induced early flowering is mediated by miR169 in Arabidopsis thaliana. [score:1]
[1 to 20 of 1 sentences]
33
[+] score: 1
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR157a, ath-MIR157b, ath-MIR157c, ath-MIR157d, ath-MIR159a, ath-MIR165a, ath-MIR165b, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR169a, ath-MIR170, ath-MIR171a, ath-MIR172a, ath-MIR172b, ath-MIR159b, ath-MIR319a, ath-MIR319b, osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR169a, osa-MIR171a, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR171b, ath-MIR171c, ath-MIR172c, ath-MIR172d, ath-MIR395a, ath-MIR395b, ath-MIR395c, ath-MIR395d, ath-MIR395e, ath-MIR395f, ath-MIR399a, ath-MIR399b, ath-MIR399c, ath-MIR399d, ath-MIR399e, ath-MIR399f, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, ath-MIR401, ath-MIR156g, ath-MIR156h, ath-MIR159c, ath-MIR319c, ath-MIR172e, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR166k, osa-MIR166l, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR172d, osa-MIR171i, osa-MIR166m, osa-MIR166j, ath-MIR413, ath-MIR414, ath-MIR415, ath-MIR416, ath-MIR417, osa-MIR413, osa-MIR414, osa-MIR415, osa-MIR416, osa-MIR417, ath-MIR426, osa-MIR426, osa-MIR438, osa-MIR444a, ptc-MIR156a, ptc-MIR156b, ptc-MIR156c, ptc-MIR156d, ptc-MIR156e, ptc-MIR156f, ptc-MIR156g, ptc-MIR156h, ptc-MIR156i, ptc-MIR156j, ptc-MIR156k, ptc-MIR159a, ptc-MIR159b, ptc-MIR159d, ptc-MIR159e, ptc-MIR159c, ptc-MIR166a, ptc-MIR166b, ptc-MIR166c, ptc-MIR166d, ptc-MIR166e, ptc-MIR166f, ptc-MIR166g, ptc-MIR166h, ptc-MIR166i, ptc-MIR166j, ptc-MIR166k, ptc-MIR166l, ptc-MIR166m, ptc-MIR166n, ptc-MIR166o, ptc-MIR166p, ptc-MIR166q, ptc-MIR169a, ptc-MIR169aa, ptc-MIR169ab, ptc-MIR169ac, ptc-MIR169ad, ptc-MIR169ae, ptc-MIR169af, ptc-MIR169b, ptc-MIR169c, ptc-MIR169d, ptc-MIR169e, ptc-MIR169f, ptc-MIR169g, ptc-MIR169h, ptc-MIR169i, ptc-MIR169j, ptc-MIR169k, ptc-MIR169l, ptc-MIR169m, ptc-MIR169n, ptc-MIR169o, ptc-MIR169p, ptc-MIR169q, ptc-MIR169r, ptc-MIR169s, ptc-MIR169t, ptc-MIR169u, ptc-MIR169v, ptc-MIR169w, ptc-MIR169x, ptc-MIR169y, ptc-MIR169z, ptc-MIR171a, ptc-MIR171b, ptc-MIR171c, ptc-MIR171d, ptc-MIR171e, ptc-MIR171f, ptc-MIR171g, ptc-MIR171h, ptc-MIR171i, ptc-MIR172a, ptc-MIR172b, ptc-MIR172c, ptc-MIR172d, ptc-MIR172e, ptc-MIR172f, ptc-MIR172g, ptc-MIR172h, ptc-MIR172i, ptc-MIR319a, ptc-MIR319b, ptc-MIR319c, ptc-MIR319d, ptc-MIR319e, ptc-MIR319f, ptc-MIR319g, ptc-MIR319h, ptc-MIR319i, ptc-MIR395a, ptc-MIR395b, ptc-MIR395c, ptc-MIR395d, ptc-MIR395e, ptc-MIR395f, ptc-MIR395g, ptc-MIR395h, ptc-MIR395i, ptc-MIR395j, ptc-MIR399a, ptc-MIR399b, ptc-MIR399d, ptc-MIR399f, ptc-MIR399g, ptc-MIR399h, ptc-MIR399i, ptc-MIR399j, ptc-MIR399c, ptc-MIR399e, ptc-MIR481a, ptc-MIR482a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, ptc-MIR171k, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, ptc-MIR171l, ptc-MIR171m, ptc-MIR171j, osa-MIR395x, osa-MIR395y, ath-MIR156i, ath-MIR156j, ptc-MIR482d, ptc-MIR156l, ptc-MIR169ag, ptc-MIR482b, ptc-MIR395k, ptc-MIR482c
Testing the Arabidopsis ath-MIR169 family (14 members), approximately two-thirds could be grouped as homologs: this is as expected, as precursors originating from recent duplications have highly similar loop regions [33]. [score:1]
[1 to 20 of 1 sentences]
34
[+] score: 1
mir169 [93] HAP2 family membersmir172 [94] several genes containing AP2 domainsmir319 [97], [98] TCP family members. [score:1]
[1 to 20 of 1 sentences]