sort by

8 publications mentioning dre-mir-222a

Open access articles that are associated with the species Danio rerio and mention the gene name mir-222a. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 95
Since neither miR-221 nor miR-222 targets CXCR4 directly according to bioinformatics prediction, how CXCR4 levels are regulated is still an open question. [score:5]
Only miR-222, but not miR-221, inhibited ETS1 translation through both putative binding sites (Figure  5D). [score:5]
Over -expression of either miR-221 or miR-222 in zebrafish embryos resulted in the deregulation of blood vessel pattern during development (Figure  4E, abnormal blood vessels indicated by arrows). [score:5]
miR-221 and miR-222 each has unique targets and different mechanisms to repress the activities of diseased late EPCs (Figure  5F). [score:5]
We found ETS1 is among miR-222 -suppressed genes in late EPCs and possesses miR-221/-222 binding sites on its 3′UTR according to the TargetScan bioinformatics prediction (Figure  5B). [score:5]
ETS1 is a known target of miR-222 in mature endothelial cells [31] and contributes to embryonic angiogenesis regulation and may play a role in the modulation and maturation of EPC. [score:4]
To explore the underlying mechanisms, we aligned genes down-regulated by miR-221 and miR-222. [score:4]
Nevertheless, no miR-221- or miR-222 -binding site could be identified on CXCR4 mRNA (not shown), we searched for direct targets for either miRNAs. [score:4]
Examples like miR-221 and miR-222 are transcribed from the same miRNA cluster and are able to modulate the angiogenic properties of HUVECs by targeting c-Kit and endothelial nitric oxide synthase (eNOS) [17, 18]. [score:3]
miR-221 and miR-222 also inhibit erythropoiesis and erythroleukemic cell growth via down-modulating cKit [50]. [score:3]
VEGF repressed the levels of matured miR-222 and pri-miR-221/222 in diseased late EPCs (Figure  4C). [score:3]
When miR-221 and miR-222 were overexpressed in late EPCs, only miR-221, but not miR-222, repressed PIK3R1 (Figure  5E, lower panel). [score:3]
Since miR-221 and miR-222 are known to target ETS2 and ETS1, respectively, in matured blood vessel endothelial cells [31], we tested whether ETS1 and ETS2 levels in late EPCs from CAD patients. [score:3]
Consistent with these observations, in late EPCs from CAD patients the expression levels of miR-221 and miR-222 are increased (Figure  4A) [20]. [score:3]
We observed defective vascular growth when miR-221 or miR-222, especially miR-222, was overexpressed in zebrafish. [score:3]
The direct repression of ETS1 translation by miR-221 and miR-222 was examined by 3′UTR reporter assays. [score:3]
We found both miR-221 and miR-222 repressed in late EPCs the levels of chemokine (C-X-C motif) receptor 4 (CXCR4), the receptor for CXCL12 (Figure  4), partly explains why miR-221/222 inhibit late EPC motility (Figure  4C), and EPC levels were reduced in the peripheral blood of CAD patients. [score:3]
It has been reported that levels of miR-221 and miR-222 are higher in EPCs from patients with coronary artery disease (CAD) [19, 20], but the anti-angiogenic role of miR-221/222 and the downstream mechanism in late EPCs is unclear. [score:3]
In contrast, PIK3R1 is the target of miR-221, but not miR-222 in late EPCs. [score:3]
Overexpression of miR-221 and miR-222 resulted in the reduction of genes involved in hypoxia response, metabolism, TGF-beta signalling, and cell motion. [score:3]
Overexpress miR-221 and miR-222 in zebrafish embryos. [score:3]
Clinically, both miR-221-PIK3R1 and miR-222-ETS1 pairs are deregulated in late EPCs of CAD patients. [score:2]
In summary, our results demonstrate miR-221 and miR-222 repress the levels of PIK3R1 and ETS1, respectively to regulate angiogenic features in EPCs and ECs (Figure  5F) and suggest mechanisms of why late EPC levels and activities are reduced in CAD patients. [score:2]
Reporter assays showed that miR-222, but not miR-221, targets the angiogenic factor ETS1. [score:2]
Figure 5 miR-221 and miR-222 regulate PIK3R1 and ETS1, respectively, in late EPCs. [score:2]
Repression of CXCR4 levels by both miR-221 and miR-222 was confirmed by RT-qPCR (Additional file 6: Figure S1). [score:1]
RT-qPCR using independent batches of cord blood EPCs verified that anti-angiogenic miRNAs such as miR-221-3p and miR-222-3p (was known as miR-221 and miR-222) [17, 18] were enriched in matured ECs (Figure  1G). [score:1]
Not only hamper late EPC activities in vitro, both microRNAs (especially miR-222) also hindered in vivo vasculogenesis in a zebrafish mo del. [score:1]
Furthermore, circulating miR-221 and miR-222 levels in the plasma of CAD patients were found to be higher. [score:1]
miR-222, but not miR-221, led to a significant reduction in blood vessel density in vivo (Figure  4F). [score:1]
Embryos in the Tg(kdrl:EGFP) [s843] background were injected with 460 pg of negative control RNA (n = 100), 560 pg RNA of miR-221 (n = 106), or 560 pg RNA of miR-222 (n = 62). [score:1]
Obtained signatures made up of both novel and known microRNAs, in which anti-angiogenic microRNAs such as miR-221 and miR-222 are more abundant in matured ECs than in late EPCs. [score:1]
miR-221 and miR-222 are two highly homologous miRNAs encoded in tandem from human chromosome Xp11.3 and are highly conserved in vertebrates. [score:1]
miR-221/222cluster miRNAs contribute to EPC motility and blood vessel formationConsistent with the less active nature of HUVEC (Figure  1C), two anti-angiogenic miRNAs, miR-221 and miR-222, were more abundant in matured ECs (Figure  1G). [score:1]
miR-222, or both (lower) (n = 3). [score:1]
Consistent with the less active nature of HUVEC (Figure  1C), two anti-angiogenic miRNAs, miR-221 and miR-222, were more abundant in matured ECs (Figure  1G). [score:1]
[1 to 20 of 36 sentences]
2
[+] score: 56
Other miRNAs from this paper: dre-mir-7b, dre-mir-7a-1, dre-mir-7a-2, dre-mir-34a, dre-mir-181b-1, dre-mir-181b-2, dre-mir-182, dre-mir-183, dre-mir-181a-1, dre-mir-219-1, dre-mir-219-2, dre-mir-221, dre-mir-430a-1, dre-mir-430b-1, dre-mir-430c-1, dre-let-7a-1, dre-let-7a-2, dre-let-7a-3, dre-let-7a-4, dre-let-7a-5, dre-let-7a-6, dre-let-7b, dre-let-7c-1, dre-let-7c-2, dre-let-7d-1, dre-let-7d-2, dre-let-7e, dre-let-7f, dre-let-7g-1, dre-let-7g-2, dre-let-7h, dre-let-7i, dre-mir-7a-3, dre-mir-9-1, dre-mir-9-2, dre-mir-9-4, dre-mir-9-3, dre-mir-9-5, dre-mir-9-6, dre-mir-9-7, dre-mir-92b, dre-mir-96, dre-mir-100-1, dre-mir-100-2, dre-mir-124-1, dre-mir-124-2, dre-mir-124-3, dre-mir-124-4, dre-mir-124-5, dre-mir-124-6, dre-mir-125b-1, dre-mir-125b-2, dre-mir-125b-3, dre-mir-128-1, dre-mir-128-2, dre-mir-132-1, dre-mir-132-2, dre-mir-135c-1, dre-mir-135c-2, dre-mir-137-1, dre-mir-137-2, dre-mir-138-1, dre-mir-153a, dre-mir-181c, dre-mir-200a, dre-mir-218a-1, dre-mir-218a-2, dre-mir-219-3, dre-mir-375-1, dre-mir-375-2, dre-mir-454a, dre-mir-430c-2, dre-mir-430c-3, dre-mir-430c-4, dre-mir-430c-5, dre-mir-430c-6, dre-mir-430c-7, dre-mir-430c-8, dre-mir-430c-9, dre-mir-430c-10, dre-mir-430c-11, dre-mir-430c-12, dre-mir-430c-13, dre-mir-430c-14, dre-mir-430c-15, dre-mir-430c-16, dre-mir-430c-17, dre-mir-430c-18, dre-mir-430a-2, dre-mir-430a-3, dre-mir-430a-4, dre-mir-430a-5, dre-mir-430a-6, dre-mir-430a-7, dre-mir-430a-8, dre-mir-430a-9, dre-mir-430a-10, dre-mir-430a-11, dre-mir-430a-12, dre-mir-430a-13, dre-mir-430a-14, dre-mir-430a-15, dre-mir-430a-16, dre-mir-430a-17, dre-mir-430a-18, dre-mir-430i-1, dre-mir-430i-2, dre-mir-430i-3, dre-mir-430b-2, dre-mir-430b-3, dre-mir-430b-4, dre-mir-430b-6, dre-mir-430b-7, dre-mir-430b-8, dre-mir-430b-9, dre-mir-430b-10, dre-mir-430b-11, dre-mir-430b-12, dre-mir-430b-13, dre-mir-430b-14, dre-mir-430b-15, dre-mir-430b-16, dre-mir-430b-17, dre-mir-430b-18, dre-mir-430b-5, dre-mir-430b-19, dre-mir-430b-20, dre-let-7j, dre-mir-181a-2, dre-mir-34b, dre-mir-34c, dre-mir-222b, dre-mir-138-2, dre-mir-181a-4, dre-mir-181a-3, dre-mir-181a-5, dre-mir-181b-3, dre-mir-181d, dre-mir-128-3
Our results show miRNAs have a wide variety of different expression profiles in neural cells, including: expression in neuronal precursors and stem cells (for example, miR-92b); expression associated with transition from proliferation to differentiation (for example, miR-124); constitutive expression in mature neurons (miR-124 again); expression in both proliferative cells and their differentiated progeny (for example, miR-9); regionally restricted expression (for example, miR-222 in telencephalon); and cell-type specific expression (for example, miR-218a in motor neurons). [score:15]
For instance, miR-222 and miR-221 share largely similar expression in the adult hypothalamus (ATN, LH, Hd in Figure G of0 and Figure O of9) but only miR-222 is expressed in the ventral intermediate hypothalamus at the larval stage (Figure D of0 and Figure B of9; see also Table K in8 for other miRNAs belonging to a single cluster and7 tables for their expression). [score:7]
As described above, miR-222 expression is also largely conserved between larvae and adults (Figure 3h-l) but de novo expression in the adult facial and vagal lobes is also observed (LVII, LX, Figure I in0). [score:5]
miR-222 expression is restricted to specific groups of differentiating cells of the forebrain and midbrain (see also [19]), including telencephalon (P, Sd, and Sv, Figure 3h) eminentia thalami (ET in Figure C of0) and hypothalamic areas (Hi, lateral recess area (lr), diffuse nucleus of inferior lobe (DIL) and lateral torus (TLa) in Figure 3k;0, and Table D in7). [score:3]
Additional data file 20 is a figure showing miR-222 expression in the zebrafish brain. [score:3]
It is not obvious why there should be differences in miR-222 and miR-221 expression as they are present in the same cluster and one would predict that they are co-transcribed. [score:3]
The constitutive expression of miRNAs such as miR-124, miR-181, miR-222 and others in mature neurons is consistent with an initial role in the clearance of mRNAs from the neuronal precursor stage but later they may fulfill a different role in the surveillance of fluctuations in aberrant transcription from notionally 'silenced' loci. [score:3]
Like miR-137, miR-222 shows conserved restricted expression in the rostral brain throughout life with domains in the telencephalon (for instance, compare P in Figure 3h with P, Dm, Dd, Dl, and Dc in Figure 3i,j), hypothalamus (DIL, TLa, lr/Hd-lr in Figure 3k,l) and posterior tubercular area (PTv in Figure 3k and nPVO in Figure 3l; see also0, and Tables D and I in7). [score:3]
miR-222 expression in the zebrafish brain. [score:3]
Click here for file 0 miR-222 expression in the zebrafish brain. [score:3]
miR-222 and miR-34 are expressed in neural cells in restricted subdivisions along the rostro-caudal axis of the larval brain. [score:3]
Figure 3 miR-137 and miR-222 expression is conserved between larval and adult brain. [score:3]
We compared the adult brain expression of miRNAs belonging to the same family, such as miR-181a and miR-181b, or cluster, such as miR-221 and miR-222, that differ in three and four nucleotides, respectively; LNA probes should, therefore, discriminate each of them. [score:2]
[1 to 20 of 13 sentences]
3
[+] score: 12
Other miRNAs from this paper: dre-mir-10a, dre-mir-10b-1, dre-mir-204-1, dre-mir-181a-1, dre-mir-214, dre-mir-430a-1, dre-mir-430b-1, dre-mir-430c-1, dre-let-7a-1, dre-let-7a-2, dre-let-7a-3, dre-let-7a-4, dre-let-7a-5, dre-let-7a-6, dre-let-7b, dre-let-7c-1, dre-let-7c-2, dre-let-7d-1, dre-let-7d-2, dre-let-7e, dre-let-7f, dre-let-7g-1, dre-let-7g-2, dre-let-7h, dre-let-7i, dre-mir-10b-2, dre-mir-10c, dre-mir-10d, dre-mir-17a-1, dre-mir-17a-2, dre-mir-21-1, dre-mir-21-2, dre-mir-22a, dre-mir-22b, dre-mir-25, dre-mir-26a-1, dre-mir-26a-2, dre-mir-26a-3, dre-mir-30d, dre-mir-92a-1, dre-mir-92a-2, dre-mir-92b, dre-mir-100-1, dre-mir-100-2, dre-mir-125a-1, dre-mir-125a-2, dre-mir-125b-1, dre-mir-125b-2, dre-mir-125b-3, dre-mir-125c, dre-mir-126a, dre-mir-143, dre-mir-146a, dre-mir-462, dre-mir-202, dre-mir-204-2, dre-mir-430c-2, dre-mir-430c-3, dre-mir-430c-4, dre-mir-430c-5, dre-mir-430c-6, dre-mir-430c-7, dre-mir-430c-8, dre-mir-430c-9, dre-mir-430c-10, dre-mir-430c-11, dre-mir-430c-12, dre-mir-430c-13, dre-mir-430c-14, dre-mir-430c-15, dre-mir-430c-16, dre-mir-430c-17, dre-mir-430c-18, dre-mir-430a-2, dre-mir-430a-3, dre-mir-430a-4, dre-mir-430a-5, dre-mir-430a-6, dre-mir-430a-7, dre-mir-430a-8, dre-mir-430a-9, dre-mir-430a-10, dre-mir-430a-11, dre-mir-430a-12, dre-mir-430a-13, dre-mir-430a-14, dre-mir-430a-15, dre-mir-430a-16, dre-mir-430a-17, dre-mir-430a-18, dre-mir-430i-1, dre-mir-430i-2, dre-mir-430i-3, dre-mir-430b-2, dre-mir-430b-3, dre-mir-430b-4, dre-mir-430b-6, dre-mir-430b-7, dre-mir-430b-8, dre-mir-430b-9, dre-mir-430b-10, dre-mir-430b-11, dre-mir-430b-12, dre-mir-430b-13, dre-mir-430b-14, dre-mir-430b-15, dre-mir-430b-16, dre-mir-430b-17, dre-mir-430b-18, dre-mir-430b-5, dre-mir-430b-19, dre-mir-430b-20, dre-let-7j, dre-mir-181a-2, dre-mir-1388, dre-mir-222b, dre-mir-126b, dre-mir-181a-4, dre-mir-181a-3, dre-mir-181a-5, dre-mir-204-3
In our study, we observed that the miRNAs abundant in 3 wpf gonads generally maintained steady levels of expression throughout the gonadal development, and had putative functions in repressing stem cell differentiation, notably: miR-10b-5p, miR-222a-3p, and miR-26a-3p (Figs 4 and 5). [score:4]
Several miRNAs, namely let-7a-1–5p, let-7c-5p, let-7d-5p, miR-181a-5p, miR-222a-3p, miR-430b-3p, and miR-462-5p were typically more abundant in earlier stages of gonadal development, whereas miR-100-5p, miR-10a-5p, miR-10b-5p, miR-10c-5p, miR-202-5p, and miR-30d-5p were abundant during later stages of development. [score:3]
The most enriched GO term was segment polarity determination (GO:0007367), which contained target mRNA for the miR-10 and miR-125 families, as well as miR-181a-5p miR-21-5p, miR-222a-3p, and miR-430b-3p. [score:3]
miR-222a-3p was the only miRNA with no significant change in abundance over time, while miR-10a-5p, miR-10c-5p, miR-125a-5p, miR26a-5p, and miR-92b-3p showed no significant change in abundance from 3 to 12 wpf. [score:1]
In chicken (Gallus gallus), miR-222-3p is germline enriched and represses de novo methyltransferase (DNMT3B) 40. [score:1]
[1 to 20 of 5 sentences]
4
[+] score: 7
Other miRNAs from this paper: dre-mir-196a-1, dre-mir-199-1, dre-mir-199-2, dre-mir-199-3, dre-mir-203a, dre-mir-210, dre-mir-214, dre-mir-219-1, dre-mir-219-2, dre-mir-221, dre-mir-430a-1, dre-mir-430b-1, dre-mir-430c-1, dre-mir-429a, dre-let-7a-1, dre-let-7a-2, dre-let-7a-3, dre-let-7a-4, dre-let-7a-5, dre-let-7a-6, dre-let-7b, dre-let-7c-1, dre-let-7c-2, dre-let-7d-1, dre-let-7d-2, dre-let-7e, dre-let-7f, dre-let-7g-1, dre-let-7g-2, dre-let-7h, dre-let-7i, dre-mir-1-2, dre-mir-1-1, dre-mir-9-1, dre-mir-9-2, dre-mir-9-4, dre-mir-9-3, dre-mir-9-5, dre-mir-9-6, dre-mir-9-7, dre-mir-21-1, dre-mir-21-2, dre-mir-25, dre-mir-30e-2, dre-mir-101a, dre-mir-103, dre-mir-107a, dre-mir-122, dre-mir-124-1, dre-mir-124-2, dre-mir-124-3, dre-mir-124-4, dre-mir-124-5, dre-mir-124-6, dre-mir-126a, dre-mir-129-2, dre-mir-129-1, dre-mir-130b, dre-mir-130c-1, dre-mir-130c-2, dre-mir-133a-2, dre-mir-133a-1, dre-mir-133b, dre-mir-133c, dre-mir-135c-1, dre-mir-135c-2, dre-mir-140, dre-mir-142a, dre-mir-142b, dre-mir-150, dre-mir-152, dre-mir-462, dre-mir-196a-2, dre-mir-196b, dre-mir-202, dre-mir-203b, dre-mir-219-3, dre-mir-365-1, dre-mir-365-2, dre-mir-365-3, dre-mir-455-1, dre-mir-430c-2, dre-mir-430c-3, dre-mir-430c-4, dre-mir-430c-5, dre-mir-430c-6, dre-mir-430c-7, dre-mir-430c-8, dre-mir-430c-9, dre-mir-430c-10, dre-mir-430c-11, dre-mir-430c-12, dre-mir-430c-13, dre-mir-430c-14, dre-mir-430c-15, dre-mir-430c-16, dre-mir-430c-17, dre-mir-430c-18, dre-mir-430a-2, dre-mir-430a-3, dre-mir-430a-4, dre-mir-430a-5, dre-mir-430a-6, dre-mir-430a-7, dre-mir-430a-8, dre-mir-430a-9, dre-mir-430a-10, dre-mir-430a-11, dre-mir-430a-12, dre-mir-430a-13, dre-mir-430a-14, dre-mir-430a-15, dre-mir-430a-16, dre-mir-430a-17, dre-mir-430a-18, dre-mir-430i-1, dre-mir-430i-2, dre-mir-430i-3, dre-mir-430b-2, dre-mir-430b-3, dre-mir-430b-4, dre-mir-430b-6, dre-mir-430b-7, dre-mir-430b-8, dre-mir-430b-9, dre-mir-430b-10, dre-mir-430b-11, dre-mir-430b-12, dre-mir-430b-13, dre-mir-430b-14, dre-mir-430b-15, dre-mir-430b-16, dre-mir-430b-17, dre-mir-430b-18, dre-mir-430b-5, dre-mir-430b-19, dre-mir-430b-20, dre-let-7j, dre-mir-135b, dre-mir-135a, dre-mir-499, dre-mir-738, dre-mir-429b, dre-mir-1788, dre-mir-196c, dre-mir-107b, dre-mir-455-2, dre-mir-222b, dre-mir-126b, dre-mir-196d, dre-mir-129-3, dre-mir-129-4
Similar results were obtained for miR_21 where RNF11 gene was highlighted as a candidate target of this novel miRNA of the mir-222 family. [score:3]
This result is also supported by retrieval of miR-222 in a blast search for miRNAs that target RNF11. [score:3]
Interestingly, the conserved novel miRNAs retrieved by miRDeep, namely miR_4 (miR-429 family), miR_5 (miR-429 family), miR_6 (miR-1788 family), miR_11 (miR-196 family), miR_15 (miR-196 family), miR_16 (miR-103 family) and miR_21 (miR-222 family) were also predicted as novel ZF miRNAs by Ensembl algorithms (Table 4). [score:1]
[1 to 20 of 3 sentences]
5
[+] score: 5
Overexpression of miR-181a, miR-181b, miR-221, miR-222 and miR-451 (10 µM) resulted in no observable phenotype in zebrafish embryos at 2 dpf. [score:3]
Zebrafish embryos injected with miR-221, miR-222 and miR-451 display no observable phenotype (figure not shown). [score:1]
The miRNAs that did not produce any visible vascular phenotypes in our screen include miR-181a, miR-181b, miR-221, miR-222 and miR-451. [score:1]
[1 to 20 of 3 sentences]
6
[+] score: 5
Notably, cardiac-specific miR-1, miR-133, miR-208 and miR-499 were all suppressed by two or more orders of magnitude [34], [35], as were the stemness and cell cycle repressors miR-141 and miR-137 [36]; in contrast, the proliferative miRNAs, miR-222 [37], increased dramatically in MDCs, and miR-221 was undetectable in myocytes but highly expressed in MDCs (Figure 5D). [score:5]
[1 to 20 of 1 sentences]
7
[+] score: 3
MiR-222, which showed unaltered expression in the microarray study, was used as a control for normalization. [score:2]
For normalization, miR-222, which showed no changes in response to bacterial challenge, was taken as reference. [score:1]
[1 to 20 of 2 sentences]
8
[+] score: 2
Other miRNAs from this paper: hsa-let-7a-1, hsa-let-7a-2, hsa-let-7a-3, hsa-let-7b, hsa-let-7e, hsa-mir-20a, hsa-mir-21, hsa-mir-23a, hsa-mir-24-1, hsa-mir-24-2, hsa-mir-26b, hsa-mir-27a, hsa-mir-29a, hsa-mir-31, hsa-mir-29b-1, hsa-mir-29b-2, hsa-mir-103a-2, hsa-mir-103a-1, hsa-mir-199a-1, hsa-mir-148a, hsa-mir-7-1, hsa-mir-7-2, hsa-mir-7-3, hsa-mir-10b, hsa-mir-181a-2, hsa-mir-181b-1, hsa-mir-181c, hsa-mir-199a-2, hsa-mir-199b, hsa-mir-203a, hsa-mir-204, hsa-mir-212, hsa-mir-181a-1, hsa-mir-221, hsa-mir-23b, hsa-mir-27b, hsa-mir-128-1, hsa-mir-132, hsa-mir-133a-1, hsa-mir-133a-2, hsa-mir-143, hsa-mir-200c, hsa-mir-181b-2, hsa-mir-128-2, hsa-mir-200a, hsa-mir-30e, hsa-mir-148b, hsa-mir-338, hsa-mir-133b, dre-mir-7b, dre-mir-7a-1, dre-mir-7a-2, dre-mir-10b-1, dre-mir-181b-1, dre-mir-181b-2, dre-mir-199-1, dre-mir-199-2, dre-mir-199-3, dre-mir-203a, dre-mir-204-1, dre-mir-181a-1, dre-mir-221, dre-let-7a-1, dre-let-7a-2, dre-let-7a-3, dre-let-7a-4, dre-let-7a-5, dre-let-7a-6, dre-let-7b, dre-let-7e, dre-mir-7a-3, dre-mir-10b-2, dre-mir-20a, dre-mir-21-1, dre-mir-21-2, dre-mir-23a-1, dre-mir-23a-2, dre-mir-23a-3, dre-mir-23b, dre-mir-24-4, dre-mir-24-2, dre-mir-24-3, dre-mir-24-1, dre-mir-26b, dre-mir-27a, dre-mir-27b, dre-mir-29b-1, dre-mir-29b-2, dre-mir-29a, dre-mir-30e-2, dre-mir-101b, dre-mir-103, dre-mir-128-1, dre-mir-128-2, dre-mir-132-1, dre-mir-132-2, dre-mir-133a-2, dre-mir-133a-1, dre-mir-133b, dre-mir-133c, dre-mir-143, dre-mir-148, dre-mir-181c, dre-mir-200a, dre-mir-200c, dre-mir-203b, dre-mir-204-2, dre-mir-338-1, dre-mir-338-2, dre-mir-454b, hsa-mir-181d, dre-mir-212, dre-mir-181a-2, hsa-mir-551a, hsa-mir-551b, dre-mir-31, dre-mir-722, dre-mir-724, dre-mir-725, dre-mir-735, dre-mir-740, hsa-mir-103b-1, hsa-mir-103b-2, dre-mir-2184, hsa-mir-203b, dre-mir-7146, dre-mir-181a-4, dre-mir-181a-3, dre-mir-181a-5, dre-mir-181b-3, dre-mir-181d, dre-mir-204-3, dre-mir-24b, dre-mir-7133, dre-mir-128-3, dre-mir-7132, dre-mir-338-3
26 +2.14 miR-132 +1.83 (1.71e-3) +0.52 miR-2184 -2.63 (2.54e-5) -2.25 -2.50 miR-222a +1.54 (1.13e-2) +3.24 miR-24 -1.36 (1.9e-2) -1.41 -0.73 miR-454b +1.14 (4.93e-2) +0.14 miR-133a -1.72 (2.67e-3) -4.25 -5.07 miR-101b -2.52 (3.44e-5) -3.43 miR-338 -2.23 (1.90e-4) -2.90 -1.57 miR-26b -1.91 (1.84e-3) -3. 67 miR-204 -2.60 (4.76e-5) -0.57 -2.36 miR-203b -1.77 (3.45e3 -0.21 miR-10b -1.36 (2.90e-2) -1.78 miR-725 -1.29 (3.23e-2) -1.62 Zebrafish + Axolotl Zebrafish SymbolZebrafish log [2] Fold-change (p-value)Axolotl log [2] Fold-change SymbolZebrafish log [2] Fold-change (p-value) miR-27a +1.57 (7.96e-3) +2.15 miR-27b +1.38 (2.44e-2) miR-29b -2.05 (1.28e-2) -0.97 miR-143 +1.31 (2.89e-2) miR-30e +1.18 (4.80e-2) miR-200c -1.85 (1.72e-3) miR-200a -1.74 (3.66e-3) miR-23a -1.35 (2.05e-2) 10. [score:1]
26 +2.14 miR-132 +1.83 (1.71e-3) +0.52 miR-2184 -2.63 (2.54e-5) -2.25 -2.50 miR-222a +1.54 (1.13e-2) +3.24 miR-24 -1.36 (1.9e-2) -1.41 -0.73 miR-454b +1.14 (4.93e-2) +0.14 miR-133a -1.72 (2.67e-3) -4.25 -5.07 miR-101b -2.52 (3.44e-5) -3.43 miR-338 -2.23 (1.90e-4) -2.90 -1.57 miR-26b -1.91 (1.84e-3) -3. 67 miR-204 -2.60 (4.76e-5) -0.57 -2.36 miR-203b -1.77 (3.45e3 -0.21 miR-10b -1.36 (2.90e-2) -1.78 miR-725 -1.29 (3.23e-2) -1.62 Zebrafish + Axolotl Zebrafish SymbolZebrafish log [2] Fold-change (p-value)Axolotl log [2] Fold-change SymbolZebrafish log [2] Fold-change (p-value) miR-27a +1.57 (7.96e-3) +2.15 miR-27b +1.38 (2.44e-2) miR-29b -2.05 (1.28e-2) -0.97 miR-143 +1.31 (2.89e-2) miR-30e +1.18 (4.80e-2) miR-200c -1.85 (1.72e-3) miR-200a -1.74 (3.66e-3) miR-23a -1.35 (2.05e-2) 10. [score:1]
[1 to 20 of 2 sentences]