sort by

37 publications mentioning osa-MIR390

Open access articles that are associated with the species Oryza sativa and mention the gene name MIR390. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 162
Mature miR390 expression was down-regulated after 6 h exposure to 60 μM CdCl [2], which was consistent with the microarray data (Figure 1B). [score:6]
Microarray results showed that miR390 expression was substantially down-regulated under Cd stress (Ding et al., 2011). [score:6]
FIGURE 1Expression levels of miR390 and its target gene OsSRK as detected by qPCR. [score:5]
Furthermore, expression of miR390 changed the expression pattern of several metal transporter genes. [score:5]
miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. [score:5]
The rice genome encodes miR390, which regulates the expression of O. sativa stress-responsive leucine-rich repeat receptor-like kinase (OsSRK; LOC_Os02g10100). [score:4]
However, the role of miR390 in the rice stress response and the biological consequences of target gene regulation of miR390 remain to be identified. [score:4]
In Arabidopsis, miR390 was demonstrated to mediate the regulatory pathway miR390-TAS3-ARFs involved in auxin signaling and the regulation of lateral root development (Marin et al., 2010; Yoon et al., 2010). [score:4]
Whereas, mature miR390 was found to be down-regulated by Cd stress in rice, OsSRK transcripts were dramatically induced under Cd stress. [score:4]
miR390 has been reported to be down-regulated by Al, As, Cd, and Hg (Ding et al., 2011; Chen et al., 2012; Zhou et al., 2012). [score:4]
We examined the growth of miR390 -overexpressing rice seedlings under Cd stressed conditions (Figures 4A and 5A). [score:3]
The differentially expressed mature miR390 were validated by stem–loop RT-PCR as previously reported (Chen et al., 2005; Varkonyi-Gasic et al., 2007). [score:3]
These results indicated that overexpression of miR390 can increase membrane damage caused by Cd stress. [score:3]
Sequence Alignment and cis-acting Element Analysis of miR390 and its TargetThe pre-miR390 sequence was downloaded from miRBase, miRBase Release 18.0 [1]. [score:3]
The transgenic plants overexpressing miR390 showed enhanced sensitivity to Cd stress. [score:3]
FIGURE 2Expression in plants of the vector of p1301- 35S:MIR390. [score:3]
OsSRK was repressed in 35S:MIR390 plants, in which the expression levels of several metal transporter genes changed. [score:3]
In rice, miR390 has been experimentally validated to target a stress-responsive LRR-like kinase (OsSRK; LOC_Os02g10100) by 5′ RACE and degradome sequencing (Sunkar et al., 2005; Zhou et al., 2010). [score:3]
In rice roots, miR390 expression decreased after 1 h of treatment with 60 μM Cd, and continued to decrease over 36 h of the same treatment (Figure 1C). [score:3]
To determine whether miR390 influences plant growth under heavy metal conditions, transgenic rice plants overexpressing miR390 under control of the CaMV 35S promoter (35S:MIR390 plants) were generated. [score:3]
In this study, mature miR390 was decreased in roots of rice under Cd stress, which was consistent to the expression pattern of miR390 precursor in our previous study (Ding et al., 2011). [score:3]
Transcript levels of the mature miR390 were substantially increased in transgenic plants, indicating that 35S:MIR390 plants overexpress miR390. [score:3]
Generation and Identification of Transgenic Rice Overexpressing miR390. [score:3]
After 14 days of 150 μM CdCl [2] treatment, the H [2]O [2] content in leaves of wild-type increased by 1.4-fold, whereas those in transgenic plants increased by 2.0-fold, suggesting that overexpression of miR390 cannot efficiently eliminate H [2]O [2] produced under Cd stress, resulting in the decreased Cd tolerance of transgenic rice. [score:3]
In this study, we performed real time PCR analysis of the expression of mature miR390 in 2-weeks-old rice seedlings. [score:3]
To examine time -dependent changes in the expression of mature miR390, qPCR analysis was performed in 2-weeks-old rice seedlings. [score:3]
Expression levels of mature miR390, OsSRK, and metal transporter genes in transgenic rice plants were examined using real-time PCR. [score:3]
Thus, the increase in Cd translocation of 35S:MIR390 plants could be attributable to the change in the expression level of OsHMA2. [score:3]
Stress- and defense-related elements, such as ARE, TC-rich repeats and MBS, were enriched in these regions, suggesting that miR390 and its target OsSRK were possibly involved in the stress responses in plants (Table 1). [score:3]
By contrast, the target gene of miR390, OsSRK, was induced sharply after exposure to Cd for 36 h (Figure 1C). [score:3]
Sequence Alignment and cis-acting Element Analysis of miR390 and its Target. [score:3]
To assess whether the increase in Cd sensitivity was because of higher metal accumulation, the Cd content in roots and shoots of miR390 -overexpressing rice lines was compared with that of the same organs of wild-type plants. [score:2]
In our analyses, more transcripts of OsHMA2 and OsNRAMP5 were produced in the Cd-stressed roots of 35S:MIR390 than in wild-type plants, indicating that they were positively regulated by miR390 and important for Cd accumulation and translocation in rice. [score:2]
Overexpression of miR390 significantly retarded seedling growth under Cd stress conditions compared with wild-type plants. [score:2]
MiR390 -overexpressing plants showed higher accumulation of Cd and a higher degree of Cd -induced oxidative stress than wild-type. [score:2]
These results further validated the negative regulation of miR390 in OsSRK transcripts. [score:2]
Upstream cis-acting regulatory element sequences of miR390 and OsSRK were analyzed by plantCARE [6]. [score:2]
showed that OsHMA2 and OsNRAMP5 were increased in miR390 -overexpressing transgenic plants compared to wild-type plants under Cd treatment. [score:2]
In Arabidopsis, miR390 exerts its action through the biogenesis of ta-siRNAs that, in turn, leads to the degradation of ARFs (auxin response factors) that play critical roles in lateral root development (Marin et al., 2010; Meng et al., 2010). [score:2]
The role of miR390-TAS3- ARFs pathway on lateral root development in rice remains to be validated and elucidated. [score:2]
Auxin regulation of the microRNA390 -dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. [score:2]
In this study, the expression level of OsHMA2 was increased in 35S:MIR390 plants, in which Cd contents were higher in the shoots compared with wild-type plants. [score:2]
MiR390 -overexpressing plants had higher accumulation of Cd and higher translocation of Cd from roots to shoots relative to the wild-type. [score:2]
The 1500-bp DNA sequences upstream of the transcription initiation site of the pre-miR390 gene and OsSRK were extracted from the TIGR Rice Genome Annotation site [2]. [score:1]
All these results indicated that the 35S:MIR390 plants were Cd sensitive. [score:1]
Cleavage of OsSRK mRNA by miR390 has been confirmed by 5′ rapid amplification of cDNA ends (5′ RACE; Sunkar et al., 2005). [score:1]
In each growth chamber, WT plants were grown on the left and 35S:MIR390 plants on the right. [score:1]
microRNA390 (miR390) is conserved in rice (Oryza sativa), maize (Zea mays), and Arabidopsis thaliana. [score:1]
To estimate the effect of miR390 on Cd accumulation and translocation to shoots, several heavy metal transporter genes were examined in 35S:MIR390 roots after Cd treatment by qPCR (Figure 7). [score:1]
These results were partly consistent with Yoon et al. ’s (2010) report in which miR390 exerted a negative effect on lateral root formation in Arabidopsis. [score:1]
FIGURE 5Performance of wild-type and 35S:MIR390 transgenic plants treated with 150 μM CdCl [2] for 14 days. [score:1]
Cd Stress Decreases miR390 Level. [score:1]
Site name Loc (-bp) miR390 ARE -1146 LTR -1341 -900 MBS -737 -881 TC-rich repeats -234 TGACG-motif -914 OsSRK ARE -1141 -522 MBS -179 TC-rich repeats -390 TCA-element -85 TGA-element -607 ARE, anaerobic responsive element; LTR, low temperature-responsive element; TC-rich repeats, defense and stress responsive element; TGA-element, auxin responsive element; TGACG-motif, MeJA-responsive element; TCA-element, salicylic acid-responsive element; MBS, MYB binding site, involved in drought-inducibility. [score:1]
Quantitative analyses confirmed that the shoot weight, lateral root weight and root length of 35S:MIR390 plants were significantly lower than those of wild-type plants when grown on Cd (Figures 4B–E). [score:1]
These results showed that the profiles of miR390 and OsSRK transcripts were complementary, but not exactly opposite, to each other. [score:1]
These results provided a link between miR390 and Cd stress tolerance in rice. [score:1]
However, no reduction in lateral root number was observed in 35S:MIR390 seedlings treated with Cd. [score:1]
Sequence alignment of miR390 and OsSRK was as shown in Figure 1A. [score:1]
Sequence Analysis of miR390 and OsSRK. [score:1]
Transgenic lines were achieved by co-cultivation of rice calli with Agrobacterium tumefaciens strain EHA105 containing p1301-35S:MIR390 (Hiei et al., 1994). [score:1]
FIGURE 3Confirmation of 35S:MIR390 transgenic rice plants. [score:1]
The pre-miR390 sequence was downloaded from miRBase, miRBase Release 18.0 [1]. [score:1]
FIGURE 4Decreased Cd resistance of 35S:MIR390 transgenic rice plants. [score:1]
Sequence Analysis of miR390 and OsSRKMicroRNA sequences were derived from miRBase [5]. [score:1]
FIGURE 7Quantitative real-time PCR (QPCR) analysis of metal transporter genes in 35S:MIR390 transgenic plant roots compare with wild-type plants under Cd stress. [score:1]
Previous studies suggested that the miR390 family was involved in the plant heavy metal stress response (Mendoza-Soto et al., 2012; Yang and Chen, 2013). [score:1]
Quantitative analyses showed that lateral root weight and root length of 35S:MIR390 plants were significantly lower than those of wild-type plants when grown on Cd. [score:1]
More OsNRAMP5 transcripts were detected in 35S:MIR390 roots, implying more Cd accumulation in rice. [score:1]
35S:MIR390 Plants Accumulate more Cd than Wild-Type Plants. [score:1]
The transgenic 35S:MIR390 rice plants were single-locus T-DNA insertion lines. [score:1]
35S:MIR390 Plants are More Sensitive to Cd Stress than are Wild-Type Plants. [score:1]
[1 to 20 of 71 sentences]
2
[+] score: 52
Other miRNAs from this paper: ath-MIR390a, ath-MIR390b, bdi-MIR390a
Four different ami RNA sequences designed to target specifically endogenous genes and expressed from Os MIR390‐based vectors were validated in transgenic Brachypodium distachyon plants. [score:5]
To test amiRNA expression from OsMIR390 precursors, transformed B.  distachyon calli containing amiRNA constructs expressing miR390 or modified versions of several miRNAs from Arabidopsis (amiR173‐21, amiR472‐21 or amiR828‐21) (Cuperus et al., 2010) were analyzed (Figure  2a). [score:5]
Here, a series of expression vectors based on Oryza sativa MIR390 (Os MIR390) precursor was developed for high‐throughput cloning and high expression of ami RNAs in monocots. [score:5]
Surprisingly, ami RNAs accumulated to higher levels and were processed more accurately when expressed from chimeric Os MIR390‐based precursors that include distal stem–loop sequences from Arabidopsis thaliana MIR390a (At MIR390a). [score:3]
Mean (n = 3) relative ami RNA levels + standard deviation (SD) when expressed from the Os MIR390 (light grey, ami RNA level = 1.0). [score:3]
Figure 5Mapping of ami RNA reads from Os MIR390‐AtL‐ or Os MIR390‐based precursors expressed in Brachypodium T0 transgenic plants. [score:3]
Figure 6Transcriptome analysis of transgenic Brachypodium plants expressing ami RNAs from chimeric Os MIR390‐AtL precursors. [score:3]
MA plots show log2 fold change versus mean expression of genes for each 35S:Os MIR390‐AtL ami RNA line compared with the control lines (35S: GUS). [score:2]
These vectors contain a truncated sequence from Oryza sativa MIR390 (OsMIR390) precursor in a configuration that allows the direct cloning of amiRNAs. [score:2]
Surprisingly, miR390 accumulated to highest levels when expressed from the chimeric OsMIR390‐AtL precursor compared with each of the other three precursors (P ≤ 0.001 for all pairwise t‐test comparisons; Figure  2b). [score:2]
Unexpectedly, ami RNAs produced from chimeric Os MIR390‐based precursors including Arabidopsis thaliana MIR390a distal stem‐loop sequences accumulated elevated levels of highly effective and specific ami RNAs in transgenic Brachypodium distachyon plants. [score:1]
miR390 and miR390* nucleotides are highlighted in blue and green, respectively. [score:1]
Moreover, OsMIR390 contains the shortest distal stem–loop of all 51 sequenced MIR390 precursors from 36 species (median length = 47 nt; Figure  1b and Table S2), including those from maize (ZmaMIR390a and ZmaMIR390b), sorghum (SbiMIR390a) and B. distachyon (BdiMIR390) with lengths of 137, 148, 134 and 107 nt respectively. [score:1]
Nucleotides from the At MIR390a or Os MIR390 precursors are in black and grey, respectively, except those that were modified to preserve the corresponding authentic precursor secondary structure (in red). [score:1]
Nucleotides corresponding to the mi RNA guide and mi RNA* strands are in blue and green, respectively; nucleotides from At MIR390a or Os MIR390 precursors are in black or grey, respectively, except those that were modified to preserve authentic At MIR390a or Os MIR390 precursor secondary structures (in red). [score:1]
The MIR390 family is among the most deeply conserved miRNA families in plants (Axtell et al., 2006; Cuperus et al., 2011). [score:1]
Approximately 70% of reads mapping to the OsMIR390 foldback correspond to the authentic 21‐nt miR390 guide strand (Figure  1c). [score:1]
Other nucleotides from At MIR390a and Os MIR390 precursors are in black and grey, respectively. [score:1]
MiRbase locus identifiers of plant MIR390 precursors. [score:1]
Figure 1 Oryza sativa MIR390 (Os MIR390) is an accurately processed, conserved MIRNA precursor with a particularly short distal stem–loop. [score:1]
Figure 3Functionality of ami RNAs produced from authentic Os MIR390‐ or chimeric Os MIR390‐AtL‐based precursors in Brachypodium T0 transgenic plants. [score:1]
org) (Kozomara and Griffiths‐Jones, 2014) locus identifiers of the conserved rice MIRNA precursors and plant MIR390 precursors (Figure  1b) are detailed in Tables S1 and S2, respectively. [score:1]
Box‐plot showing the distal stem–loop length of O. sativa conserved MIRNA precursors and all catalogued MIR390 precursors. [score:1]
miR390 and each amiRNA derived from authentic AtMIR390a or chimeric AtMIR390a‐OsL precursors accumulated to low or non‐detectable levels, indicating that the AtMIR390a stem is suboptimal for the accumulation and/or processing of amiRNAs in Brachypodium. [score:1]
A series of ami RNA vectors based on Oryza sativa MIR390 (Os MIR390) precursor were developed for simple, cost‐effective and large‐scale synthesis of ami RNA constructs to silence genes in monocots. [score:1]
The distal stem–loop length of Os MIR390 is highlighted with an orange dot and indicated with an orange arrow. [score:1]
Proportion of small RNA reads for the entire Os MIR390 precursor are plotted as stacked bar graphs. [score:1]
Shapes of At MIR390a and Os MIR390 precursors are in black and grey, respectively. [score:1]
Figure 2Comparative analysis of accumulation and processing of several ami RNAs produced from At MIR390a, At MIR390a‐OsL, Os MIR390 and Os MIR390‐AtL precursors in Brachypodium transgenic calli. [score:1]
[1 to 20 of 29 sentences]
3
[+] score: 48
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR396a, osa-MIR396b, osa-MIR398a, osa-MIR398b, osa-MIR156k, osa-MIR156l, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR535, osa-MIR169r, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, ppe-MIR482a, ppe-MIR482b, ppe-MIR171f, ppe-MIR482c, ppe-MIR171h, ppe-MIR171a, ppe-MIR171e, ppe-MIR169e, ppe-MIR398a, ppe-MIR171g, ppe-MIR171b, ppe-MIR482d, ppe-MIR482e, ppe-MIR171c, ppe-MIR398b, ppe-MIR156a, ppe-MIR156b, ppe-MIR156c, ppe-MIR156d, ppe-MIR156e, ppe-MIR156f, ppe-MIR156g, ppe-MIR156h, ppe-MIR156i, ppe-MIR160a, ppe-MIR160b, ppe-MIR162, ppe-MIR164a, ppe-MIR164b, ppe-MIR164c, ppe-MIR164d, ppe-MIR166a, ppe-MIR166b, ppe-MIR166c, ppe-MIR166d, ppe-MIR166e, ppe-MIR167a, ppe-MIR167b, ppe-MIR167c, ppe-MIR167d, ppe-MIR168, ppe-MIR169a, ppe-MIR169b, ppe-MIR169c, ppe-MIR169d, ppe-MIR169f, ppe-MIR169g, ppe-MIR169h, ppe-MIR169i, ppe-MIR169j, ppe-MIR169k, ppe-MIR169l, ppe-MIR171d, ppe-MIR172a, ppe-MIR172b, ppe-MIR172c, ppe-MIR172d, ppe-MIR390, ppe-MIR393a, ppe-MIR393b, ppe-MIR396a, ppe-MIR396b, ppe-MIR482f, ppe-MIR535a, ppe-MIR535b
Moreover, TAS3 trans-acting short-interfering RNAs, which are targeted by miR390, can regulate miR166 expression that may control auxin flow via its target HD-ZIP. [score:8]
The expression levels of miR171, miR168, miR408a, miR398 and miR408b were significantly upregulated in mesocarp in NAA -treated samples compared to the control fruits, whereas those of miR156, miR160, miR166, miR167, miR390, miR393, miR482, miR535 and miR2118 were downregulated following NAA treatment. [score:8]
miR390 can indirectly inhibit the expression of ARF2, ARF3 and ARF4 in Arabidopsis by targeting TAS3-derived trans-acting short-interfering RNAs (tasiRNAs) [18]. [score:8]
In our study, miR390 expression levels were strongly reduced in the NAA -treated fruit, indicating that this miRNA may regulate fruit development by controlling expression of ARFs. [score:7]
The results of real-time PCR experiments revealed the increased expression levels of miR171, miR168, miR408a, miR398 and miR408b, as well as the reduced expression levels of miR166, miR167, miR160, miR156, miR2118, miR535, miR390, miR482 and miR393 in the peach fruit after NAA treatment, respectively, suggesting the functional divergence of microRNAs in the regulation of fruit development. [score:7]
miR390 was previously shown to repress the expression of ARFs by regulating tasiRNAs expression profiles [18]. [score:6]
The experimental verification results were consistent with our high throughput sequencing datasets and also with previous studies that demonstrated the critical roles of miR160, miR166, miR167, miR390 and miR393 and their targeted genes in auxin signaling pathways. [score:3]
Among these miRNAs, miR160, miR166, miR167, miR390 and miR393 are known to play important roles in auxin signaling pathways [14, 16, 17, 18, 35, 36]. [score:1]
[1 to 20 of 8 sentences]
4
[+] score: 27
In this network, miR164, miR167, and miR390 (Guo et al., 2005; Yang et al., 2006; Yoon et al., 2010), as well as the target genes ARF6 and ARF8 of miR167 (Faivre-Rampant et al., 2004; Yang et al., 2006), the target gene ARF3 of ta-siRNA (Pekker et al., 2005), and the target gene PHV of miR166 (Weijers and Jurgens, 2005), could be directly regulated by the plant hormone auxin to execute biological functions in plant development (Ljung, 2013; Pierre-Jerome et al., 2013). [score:10]
Downregulation of ta-siARFs generated from miR390 -dependent TAS3 acted on its target genes ARF2 and ARF3, modulating lateral root growth, flowering, leaf senescence and floral organ abscission, and leaf longevity (Ellis et al., 2005; Lim et al., 2010; Marin et al., 2010). [score:6]
), S31– S36 16736022 Marin E Jouannet V Herz A Lokerse AS Weijers D Vaucheret H Nussaume L Crespi MD Maizel A. 2010. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. [score:5]
Of these, auxin response factor (ARF) 2 and ARF3 were regulated by ta-siARFs from miR390-directed TAS3 cleavage, and ARF6 and ARF8 were regulated by miR167. [score:4]
Auxin regulation of the microRNA390 -dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. [score:2]
[1 to 20 of 5 sentences]
5
[+] score: 25
MiR390's cleavage target, a TAS3 ortholog (EST: AJ875750, defined as PpTAS3) was identified in peach, and shared similar dual miR390 target sites with its Arabidopsis counterpart. [score:5]
Since auxin signaling and modulation is essential for diverse biological processes in peach, especially for fruit development and ripening [66, 67], miR390- TAS3 biogenesis-derived tasiARFs in specific tissues could orchestrate auxin signaling that could be directly relevant to fruit growth and development. [score:4]
showed that both miR390 and miR828 had detectable expression in various peach tissues (Figure 2b). [score:3]
Mostly 21-nt tasiRNAs were generated in the flower tissue (Figure 4a), which correlated with flower-specific expression of miR390 (Figure 2b). [score:3]
The tissue-specific expression patterns were presented for the conserved miRNAs, miR160, miR167, miR169, miR319, miR390 and miR396, and the less-conserved miRNAs, miR828, miR858 and miR2118 (Figure 2b). [score:3]
Transcript precursors were observed for miR390 by RT-PCR in the L1 but not the L2 layer of the shoot apical meristem while similar levels of mature miR390 was revealed in the same L1 and L2 layers by in situ hybridization [56]. [score:1]
These results suggest that both miR166a and miR390 precursors could be differentially processed in various cell types or tissues, although other possibilities, including miRNA stability and mobility, could not be ruled out [56, 57]. [score:1]
org/node/35) or the EST sequence in the case of miR390. [score:1]
In this study, we found that both miR390- TAS3 and miR828- TAS4 tasiRNA pathways are conserved in peach as evidenced by the identification of miR390 and miR828, TAS3 and TAS4 transcripts and the generation of phased 21-nt siRNAs along both TAS3 and TAS4 transcripts (Figure 4a,b). [score:1]
Further, both miR390- TAS3 and miR828- TAS4 siRNA biogenesis pathways and their functions appear to be conserved in peach; miR828 cleavage is capable of activating siRNA biogenesis in PpTAS4 and three MYB protein-coding transcripts, indicating a silencing reinforcement in peach. [score:1]
Trans-acting siRNAs in peachIn this study, we found that both miR390- TAS3 and miR828- TAS4 tasiRNA pathways are conserved in peach as evidenced by the identification of miR390 and miR828, TAS3 and TAS4 transcripts and the generation of phased 21-nt siRNAs along both TAS3 and TAS4 transcripts (Figure 4a,b). [score:1]
Together, these data indicate that both miR390- TAS3 and miR828- TAS4 biogenesis pathways and functions are at least partially conserved in peach. [score:1]
[1 to 20 of 12 sentences]
6
[+] score: 23
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR169a, osa-MIR171a, osa-MIR394, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR162b, osa-MIR166k, osa-MIR166l, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR166m, osa-MIR166j, osa-MIR414, osa-MIR437, osa-MIR440, osa-MIR396e, osa-MIR444a, osa-MIR528, osa-MIR529a, osa-MIR531a, osa-MIR529b, osa-MIR1425, osa-MIR1427, osa-MIR1432, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR1436, osa-MIR1439, osa-MIR531b, osa-MIR1846d, osa-MIR1848, osa-MIR1850, osa-MIR1846a, osa-MIR1846b, osa-MIR1859, osa-MIR1860, osa-MIR1862a, osa-MIR1862b, osa-MIR1862c, osa-MIR1863a, osa-MIR1864, osa-MIR1865, osa-MIR1871, osa-MIR1874, osa-MIR1862d, osa-MIR1876, osa-MIR1862e, osa-MIR1878, osa-MIR1879, osa-MIR1319a, osa-MIR1846c, osa-MIR2055, osa-MIR1846e, osa-MIR2096, osa-MIR396f, osa-MIR2106, osa-MIR2120, osa-MIR2275a, osa-MIR2275b, osa-MIR2863a, osa-MIR2863b, osa-MIR2872, osa-MIR2875, osa-MIR2876, osa-MIR2877, osa-MIR2878, osa-MIR1863c, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR1863b, osa-MIR1862f, osa-MIR1862g, osa-MIR3979, osa-MIR3981, osa-MIR5072, osa-MIR5073, osa-MIR5076, osa-MIR5079a, osa-MIR5082, osa-MIR5083, osa-MIR2863c, osa-MIR5150, osa-MIR5151, osa-MIR5155, osa-MIR5160, osa-MIR5161, osa-MIR5162, osa-MIR5484, osa-MIR5504, osa-MIR5505, osa-MIR5513, osa-MIR2275c, osa-MIR2275d, osa-MIR5788, osa-MIR5792, osa-MIR5809, osa-MIR5812, osa-MIR1319b, osa-MIR6246, osa-MIR6250, osa-MIR6253, osa-MIR5079b, osa-MIR531c
The up-regulated microRNAs in N22 shoot after LDS (in comparison with control) were osa-miR5083, osa-miR5504, osa-miR5160, osa-miR5072, osa-miR2055, and osa-miR1427, and the down-regulated miRNAs were osa-miR166, osa-miR5073, osa-miR156, and osa-miR390. [score:7]
The up-regulation of osa-miR169, osa-miR390, and osa-miR5082 in N22 root after SDS suggests that these miRNAs may be involved in root development of N22 under high temperature stress. [score:5]
miR390 was down-regulated during cadmium stress in rice (Ding et al., 2011). [score:4]
In comparison with control, the root tissue of N22 showed up-regulation of osa-miR5504, osa-miR169, osa-miR1427, osa-miR390, osa-miR166b-5p, osa-miR5082, and osa-miR319a-3p after SDS. [score:4]
2, osa-miR390-3p, and osa-miR5082 showed high abundance in root tips suggesting their important role in root development of rice (Ma et al., 2013). [score:2]
Our results indicate that miR156 and miR390 may be involved in acclimation or adaptation to long duration heat stress in rice, which needs to be confirmed in further studies. [score:1]
[1 to 20 of 6 sentences]
7
[+] score: 20
In our experiments, miR390 showed down-regulation and up-regulation under conditions of drought stress and wet signaling, respectively. [score:7]
J Plant Biochem Biot: 1– 9. 78 Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, et al (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. [score:5]
MiR390 is another miRNA that plays a role in regulating ARFs, but unlike miR160 and miR167, it regulates ARFs indirectly. [score:4]
We also observed that miR390 did not show significant differential expression under drought signaling condition. [score:3]
Thus, miR390 promotes lateral root formation [78]. [score:1]
[1 to 20 of 5 sentences]
8
[+] score: 20
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR171a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, osa-MIR444a, zma-MIR171d, zma-MIR171f, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR408a, zma-MIR156k, zma-MIR160f, osa-MIR528, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR1432, osa-MIR827, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR2275a, osa-MIR2275b, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR390a, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR408b, zma-MIR528a, zma-MIR528b, zma-MIR827, zma-MIR1432, zma-MIR390b, osa-MIR395x, osa-MIR395y, osa-MIR2275c, osa-MIR2275d, zma-MIR444a, osa-MIR6251
Different from miRNA families discussed above, expression levels of miR164 family, reported regulators of the CUP- SHAPED COTYLEDON (CUC) genes [45], and miR390 family, regulators of lateral root development by cleaving TRANS- ACTING SIRNA3 (TAS3) precursor RNA [46], converged to normal condition after 24-h illumination although different expression patterns between maize and rice were detected during de-etiolation process (Additional file 8, Fig.   4). [score:8]
[58, 67, 68], most of them showed different expression patterns upon exposure to light (Additional file 14) except (a) miR156, miR166, miR172, which showed almost identical expression curves, and (b) miR171 and miR390, which showed shifted expression patterns. [score:7]
Auxin regulation of the microRNA390 -dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. [score:2]
miR156, miR160, miR164, miR166, miR167, miR171, miR172, and miR390, had been earlier reported to play evolutionarily conserved roles in plant development [54]. [score:2]
Many of them, i. e., miR156, miR160, miR164, miR166, miR167, miR171, miR172 and miR390, were suggested to play highly evolutionary conserved roles across plant species [54]. [score:1]
[1 to 20 of 5 sentences]
9
[+] score: 15
According to the published transcriptome data, 28 miRNAs were found to be expressed remarkably opposite to their targeted genes (Table B in S3 File), including conserved miRNAs, i. e., miR169ijk targeted nuclear factors, miR390 targeted ATP binding proteins, and miR166e targeted SGT1 protein, which are known to participate in plant development and disease resistance [50]. [score:14]
S2 Fig Lanes 3–19 are the 17 known rice miRNAs: osa-miR156abcei, osa-miR156dj, osa-miR160e, osa-miR166j, osa-miR167abc, osa-miR168a, osa-miR171bcde, osa-miR171h, osa-miR319b, osa-miR390, osa-miR535, osa-miR820abc, osa-miR1428e, osa-miR1862abc, osa-miR1882e, osa-miR1883a, and osa-miR5150. [score:1]
[1 to 20 of 2 sentences]
10
[+] score: 14
Third, although we identified several mutations in the functional regions (mature miRNA, miRNA precursor or promoter) of the candidate small RNA genes in domesticated rice, such as in the mature miR395a/b sequences and in tasi-ARF and the miR390 binding sites of TAS3 (Additional file 4 and 5), and found distinct expression levels of miR164e in the cultivated and wild rice (data not shown), it does not necessarily indicate a direct consequence of the domestication event. [score:5]
Based on this criterion, our results thus suggest that MIR164e, MIR390, MIR395a/b and TAS3a2 are potential candidates of small RNA loci that have experienced direct selection during rice domestication. [score:2]
Polymorphisms were also found in the functional regions of siRNA-generating loci in rice, for example, at phases P5'_5 and P5'_9 of a miRNA-like long hairpin (AK120922), and in ta-siARF and the 3' miR390 binding site of TAS3a2 (Additional file 5). [score:1]
Of the 20 small RNA loci, four miRNA genes (MIR164e, MIR390, MIR395a/b and MIR399d) and two siRNA genes (TAS3a2 and AK120922) had signatures of positive selection in indica and/or japonica subgroup according to Tajima's D or HKA test (Table 1). [score:1]
For example, nucleotide diversity of MIR390 reduced 7.0 and 6.3 fold in the two domesticated subgroups relative to the wild population, and nucleotide diversities of the miRNA-like long hairpin (AK120922) reduced 5.7 and 11.1 fold. [score:1]
miR390 acts as a guide for processing of TAS3 and biogenesis of ta-siRNAs, including the functional ta-siARF [5, 10, 11]. [score:1]
Of the 20 loci selected, three (miR395a/b, TAS3a2 and MIR399d) had significant negative Tajima's D values and one (miR390) had extremely low divergence according to the above neutral test results (Additional file 3); the remaining loci were randomly chosen from the small RNA list shown in Additional file 1. As previously mentioned, the extent of nucleotide diversity of selected genes tends to be reduced. [score:1]
One interesting result in this study is that both MIR390 and TAS3 are potential candidates of selection. [score:1]
Of the 20 loci selected, three (miR395a/b, TAS3a2 and MIR399d) had significant negative Tajima's D values and one (miR390) had extremely low divergence according to the above neutral test results (Additional file 3); the remaining loci were randomly chosen from the small RNA list shown in Additional file 1. As previously mentioned, the extent of nucleotide diversity of selected genes tends to be reduced. [score:1]
[1 to 20 of 9 sentences]
11
[+] score: 10
Therefore, the regulatory network modulated by miR390 maintains normal expression of ARF2, ARF3, and ARF4. [score:4]
During growth of lateral roots, miR390 affects production of tasiRNAs, and thus inhibits ARF2, ARF3, and ARF4 50. [score:3]
MiR390-derived trans-acting-small interfering RNAs (ta-siRNAs) target ARF2, ARF3, and ARF4 47 48. [score:2]
Conversely, auxin activates ARF2, ARF3, and ARF4, which consequently influences the formation of miR390. [score:1]
[1 to 20 of 4 sentences]
12
[+] score: 10
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR393b, osa-MIR408, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR528, osa-MIR529a, osa-MIR812a, osa-MIR812b, osa-MIR812c, osa-MIR812d, osa-MIR812e, osa-MIR815c, osa-MIR818d, osa-MIR529b, osa-MIR1425, osa-MIR1428a, osa-MIR169r, osa-MIR1436, osa-MIR1428b, osa-MIR1428c, osa-MIR1428d, osa-MIR1428e, osa-MIR1858a, osa-MIR1861a, osa-MIR1861b, osa-MIR1861c, osa-MIR1861d, osa-MIR1861e, osa-MIR1861f, osa-MIR1861g, osa-MIR1861h, osa-MIR1861i, osa-MIR1861j, osa-MIR1861k, osa-MIR1861l, osa-MIR1861m, osa-MIR1861n, osa-MIR812f, osa-MIR1862d, osa-MIR812g, osa-MIR812h, osa-MIR812i, osa-MIR812j, osa-MIR1428f, osa-MIR1428g, osa-MIR812k, osa-MIR812l, osa-MIR812m, osa-MIR812n, osa-MIR812o, osa-MIR812p, osa-MIR812q, osa-MIR812r, osa-MIR812s, osa-MIR812t, osa-MIR812u, osa-MIR812v, osa-MIR1861o
1,b,f, miR164a,b,f, miR167e,i, miR390,miR815c, miR818d, miR1425, miR1858a,b were positively correlated with their targets (Fig. 6B ; Table S10), which may be due to a similar feedback regulation between co-expressed MIR164A and CUC2 genes (miR164 target) as reported in Arabidopsis [43]. [score:8]
Thus, the miR167-ARF8-OsGH3.2-IAA pathway, in conjunction with other microRNA -mediated auxin signals, such as miR164 [57], miR160 [58], [59], and miR390 [55] results in a suitable IAA level in developing rice grains for regulating the progress of rice grain filling (Fig. 8 ). [score:2]
[1 to 20 of 2 sentences]
13
[+] score: 8
Here, miR390 cleaves the non-coding TAS3 gene for the production of endogenous siRNAs (ta-siRNAs) that target ARF transcripts (Allen et al. 2005; Allen et al. 2015). [score:3]
While auxin signalling pathway is regulated by miR160, miR167, miR390 and miR393, the JA biosynthetic pathway is under the control of miR319 and miR159, and miR159 regulate the ABA signalling pathway (Curaba et al. 2014). [score:3]
Additionally, ARF2, ARF3 and ARF4 are indirectly under the control of miR390. [score:2]
[1 to 20 of 3 sentences]
14
[+] score: 7
The TAS3 -associated trans-acting siRNAs (or ta-siRNAs), triggered by the microRNA miR390, are known to target mRNAs of Auxin Response Factor (ARFs) involved in various developmental processes including floret and stamen development (Allen et al. 2005; Liu et al. 2007; Nogueira et al. 2007; Song et al. 2012b). [score:5]
It has been suggested that several small RNA loci, such as miRNA-triggered phasiRNAs loci including ta-siRNA locus TAS3a2, as well as the microRNA loci MIR164e, MIR390 and MIR395a/b, have experienced direct selection during Asian rice domestication (Liu et al. 2013; Wang et al. 2010; Wang et al. 2012). [score:2]
[1 to 20 of 2 sentences]
15
[+] score: 7
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR426, osa-MIR396e, osa-MIR528, osa-MIR530, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR810a, osa-MIR812a, osa-MIR812b, osa-MIR812c, osa-MIR812d, osa-MIR812e, osa-MIR820a, osa-MIR1423, osa-MIR1425, osa-MIR1432, osa-MIR169r, osa-MIR810b, osa-MIR1436, osa-MIR1441, osa-MIR1861a, osa-MIR1861b, osa-MIR1861c, osa-MIR1861d, osa-MIR1861e, osa-MIR1861f, osa-MIR1861g, osa-MIR1861h, osa-MIR1861i, osa-MIR1861j, osa-MIR1861k, osa-MIR1861l, osa-MIR1861m, osa-MIR1861n, osa-MIR1862a, osa-MIR1862b, osa-MIR1862c, osa-MIR812f, osa-MIR1873, osa-MIR1862d, osa-MIR1862e, osa-MIR812g, osa-MIR812h, osa-MIR812i, osa-MIR812j, osa-MIR827, osa-MIR396f, osa-MIR2873a, osa-MIR2878, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, osa-MIR812k, osa-MIR812l, osa-MIR812m, osa-MIR1862f, osa-MIR1862g, osa-MIR812n, osa-MIR812o, osa-MIR2873b, osa-MIR5071, osa-MIR5074, osa-MIR5075, osa-MIR5077, osa-MIR5080, osa-MIR5081, osa-MIR5144, osa-MIR812p, osa-MIR812q, osa-MIR812r, osa-MIR5795, osa-MIR812s, osa-MIR5802, osa-MIR812t, osa-MIR812u, osa-MIR5805, osa-MIR812v, osa-MIR5807, osa-MIR2873c, osa-MIR6253, osa-MIR1861o
Among the 21 highly conserved miRNA families in rice, mature miRNAs of over 15 and 16 families were found to be differentially expressed in leaf and stem respectively with 11 families having at least a common mature miRNA member that was differentially expressed between both tissues such as osa-MIR159, osa-MIR160, osa-MIR166, osa-MIR169, osa-MIR171, osa-MIR390, osa-MIR394, osa-MIR397, osa-MIR398, osa-MIR399 and osa-MIR408 (refer to Additional file 8 for their functional information). [score:5]
as high [transcripts per million (TPM) > 10000/100000; osa-MIR168, osa-MIR156, osa-MIR166], moderate (TPM = 100–10000; osa-MIR167, osa-MIR397, osa-MIR408, osa-MIR159, osa-MIR164, osa-MIR172, osa-MIR396) and low (TPM < 100; osa-MIR160, osa-MIR162, osa-MIR169, osa-MIR171, osa-MIR390, osa-MIR393, osa-MIR394, osa-MIR395, osa-MIR398, osa-MIR399, osa-MIR827). [score:1]
Of these, 7 miRNA families, namely miR156/157, miR160, miR159, miR319, miR165/166, miR390 and miR408 were found in primitive land plants such as Physcomitrella and Selaginella suggesting that they are highly conserved over wide evolutionary distance [14]. [score:1]
[1 to 20 of 3 sentences]
16
[+] score: 7
Moreover, six miRNAs, including osa-miR160e-5p, osa-miR166i-3p_L+2R-2, osa-miR167e-3p, osa-miR167i-3p, osa-miR390-5p and osa-miR3979-5p_R+1, were up-regulated in leaves at least in two stages of grain-filling in rice N2Y6, and 11 miRNAs, including osa-miR1320-3p, osa-miR169h_R-1, osa-miR169i_R-1, osa-miR169j_R-1, osa-miR169k_R-1, osa-miR169l_R-1, osa-miR169m_R-1, osa-MIR1883b-p5_1ss6TA_L+12R-15, osa-miR2863b_L-1R+1, osa-MIR2871b-p5 and osa-miR5508, were down-regulated in leaves at least in two stages of grain-filling in rice N2Y6 (Table 2). [score:7]
[1 to 20 of 1 sentences]
17
[+] score: 7
miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. [score:5]
A number of well-conserved plant miRNAs are directly involved in auxin signaling, such as miR160, miR164, miR167, miR390, and miR393 (Mallory et al., 2004; Guo et al., 2005; Wang et al., 2005; Yang et al., 2006; Marin et al., 2010; Si-Ammour et al., 2011). [score:2]
[1 to 20 of 2 sentences]
18
[+] score: 6
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR164f, osa-MIR439a, osa-MIR439b, osa-MIR439c, osa-MIR439d, osa-MIR439e, osa-MIR439f, osa-MIR439g, osa-MIR439h, osa-MIR439i, osa-MIR396e, osa-MIR444a, tae-MIR159a, tae-MIR159b, tae-MIR160, tae-MIR164, tae-MIR167a, tae-MIR171a, tae-MIR399, tae-MIR408, tae-MIR444a, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, tae-MIR156, tae-MIR319, tae-MIR167b, tae-MIR169, tae-MIR444b, tae-MIR171b, tae-MIR396, tae-MIR167c, tae-MIR397
The frequencies of the miRNA families varied from 2 (miR390, miR396, miR397, miR399) to 757 (miR169), indicating that expression varies highly among the different miRNA families in wheat (Figure 2). [score:3]
These include miRNA156/157, miR159, miR160, miR164, miR165/166, miR167, miR168, miR169, miR170/171, miR172, miR319, miR390, miR393, miR396, miR397, miR399 and miR408, which are conserved in diverse plant species (Table 2). [score:1]
Some of these miRNA families (for example, miR319, miR390, and miR165/166) are conserved deeply, including in lower plants such as Physcometrella [26- 28]. [score:1]
Many miRNA families are evolutionarily conserved across all major lineages of plants, including mosses, gymnosperms, monocots and dicots; for example, AthmiR166, miR159 and miR390 are conserved in all lineages of land plants, including bryophytes, lycopods, ferns and monocots and dicots [26- 28]. [score:1]
[1 to 20 of 4 sentences]
19
[+] score: 6
As shown in Table 3, expressions of miR156b, miR159a1, miR164a, miR166, miR167a, miR1884b, miR393b, miR396e and miR528 were down regulated, whereas miR535, miR390 and miR171 were up regulated in the infected plants. [score:5]
These include miRNA*s for some members of the miR160 family (miR160a–f), miR166 family (miR166a–e, g–l and n), miR167 family (miR167a, c–e, h and i), miR171 family (miR171c–f and miR171i), miR396 family (miR396a–c, e and f) and miRNA* of miR1318, miR1425, miR159a, miR168, miR172d, miR390, miR444b. [score:1]
[1 to 20 of 2 sentences]
20
[+] score: 5
Other miRNAs from this paper: ath-MIR159a, ath-MIR162a, ath-MIR162b, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR169a, ath-MIR171a, ath-MIR159b, ath-MIR319a, ath-MIR319b, osa-MIR162a, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR169a, osa-MIR171a, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169k, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR171b, ath-MIR171c, ath-MIR390a, ath-MIR390b, ath-MIR396a, ath-MIR396b, ath-MIR398a, ath-MIR398b, ath-MIR398c, ath-MIR399a, ath-MIR399b, ath-MIR399c, ath-MIR399d, ath-MIR399e, ath-MIR399f, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, ath-MIR408, ath-MIR159c, ath-MIR319c, osa-MIR156k, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR162b, osa-MIR166k, osa-MIR166l, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR408, osa-MIR171i, osa-MIR166m, osa-MIR166j, ath-MIR414, osa-MIR414, osa-MIR396e, ptc-MIR156k, ptc-MIR159a, ptc-MIR159b, ptc-MIR159d, ptc-MIR159e, ptc-MIR159c, ptc-MIR162a, ptc-MIR162b, ptc-MIR166a, ptc-MIR166b, ptc-MIR166c, ptc-MIR166d, ptc-MIR166e, ptc-MIR166f, ptc-MIR166g, ptc-MIR166h, ptc-MIR166i, ptc-MIR166j, ptc-MIR166k, ptc-MIR166l, ptc-MIR166m, ptc-MIR166n, ptc-MIR166o, ptc-MIR166p, ptc-MIR166q, ptc-MIR169a, ptc-MIR169aa, ptc-MIR169ab, ptc-MIR169ac, ptc-MIR169ad, ptc-MIR169ae, ptc-MIR169af, ptc-MIR169b, ptc-MIR169c, ptc-MIR169d, ptc-MIR169e, ptc-MIR169f, ptc-MIR169g, ptc-MIR169h, ptc-MIR169i, ptc-MIR169j, ptc-MIR169k, ptc-MIR169l, ptc-MIR169m, ptc-MIR169n, ptc-MIR169o, ptc-MIR169p, ptc-MIR169q, ptc-MIR169r, ptc-MIR169s, ptc-MIR169t, ptc-MIR169u, ptc-MIR169v, ptc-MIR169w, ptc-MIR169x, ptc-MIR169y, ptc-MIR169z, ptc-MIR171a, ptc-MIR171b, ptc-MIR171c, ptc-MIR171d, ptc-MIR171e, ptc-MIR171f, ptc-MIR171g, ptc-MIR171h, ptc-MIR171i, ptc-MIR319a, ptc-MIR319b, ptc-MIR319c, ptc-MIR319d, ptc-MIR319e, ptc-MIR319f, ptc-MIR319g, ptc-MIR319h, ptc-MIR319i, ptc-MIR390a, ptc-MIR390b, ptc-MIR390c, ptc-MIR390d, ptc-MIR396a, ptc-MIR396b, ptc-MIR396c, ptc-MIR396d, ptc-MIR396e, ptc-MIR396f, ptc-MIR396g, ptc-MIR398a, ptc-MIR398b, ptc-MIR398c, ptc-MIR399a, ptc-MIR399b, ptc-MIR399d, ptc-MIR399f, ptc-MIR399g, ptc-MIR399h, ptc-MIR399i, ptc-MIR399j, ptc-MIR399c, ptc-MIR399e, ptc-MIR408, ptc-MIR482a, ptc-MIR171k, osa-MIR169r, ptc-MIR171l, ptc-MIR171m, ptc-MIR171j, ptc-MIR1448, osa-MIR396f, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR396g, osa-MIR396h, osa-MIR396d, ptc-MIR482d, ptc-MIR169ag, ptc-MIR482b, ptc-MIR482c, pde-MIR159, pde-MIR162, pde-MIR166a, pde-MIR166b, pde-MIR169, pde-MIR171, pde-MIR390, pde-MIR396, pde-MIR482a, pde-MIR482b, pde-MIR482c, pde-MIR482d, pde-MIR946, pde-MIR947, pde-MIR949a, pde-MIR950, pde-MIR951, pde-MIR952a, pde-MIR952b, pde-MIR952c, pde-MIR1311, pde-MIR1312, pde-MIR1313, pde-MIR1314, pde-MIR3701, pde-MIR3704a, pde-MIR3704b, pde-MIR3712
No targets were found for 5 miRNA families, including pde-MIR390, pde-MIR1310, pde-MIR1311, pde-MIR3701 and pde-MIR3704. [score:3]
It includes pde-MIR159, pde-MIR162, pde-MIR166, pde-MIR169, pde-MIR171, pde-MIR390, pde-MIR396 and pde-MIR399. [score:1]
For example, the pde-MIR482 family has 4 members, whereas only one exists in 19 miRNA families (pde-MIR159, pde-MIR162, pde-MIR169, pde-MIR171, pde-MIR390, pde-MIR396, pde-MIR783, pde-MIR946, pde-MIR947, pde-MIR950, pde-MIR951, pde-MIR1310, pde-MIR1311, pde-MIR1312, pde-MIR1313, pde-MIR1314, pde-MIR1448, pde-MIR3701 and pde-MIR3712). [score:1]
[1 to 20 of 3 sentences]
21
[+] score: 5
The Osa-miR390 corresponding to more than 5 coherent target genes in each progeny line, was up-regulated compared with O. longistaminata. [score:5]
[1 to 20 of 1 sentences]
22
[+] score: 4
While miR160, miR390, and miR393 expressed at comparatively low levels during rice grain filling in our study, miR167 and miR164 were very abundant in both superior and inferior spikelets (Additional file 2). [score:3]
Auxin homeostasis and signal transduction related miRNAs, including miR160 [52], miR164 [35], miR167 [53],[54], miR390 [55],[56], and miR393 [57],[58], have been reported in Arabidopsis. [score:1]
[1 to 20 of 2 sentences]
23
[+] score: 3
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR396e, gma-MIR156d, gma-MIR156e, gma-MIR156c, gma-MIR159a, gma-MIR160a, gma-MIR166a, gma-MIR166b, gma-MIR167a, gma-MIR167b, gma-MIR168a, gma-MIR172a, gma-MIR172b, gma-MIR319a, gma-MIR319b, gma-MIR156a, gma-MIR396a, gma-MIR396b, gma-MIR398a, gma-MIR398b, gma-MIR319c, gma-MIR156b, gma-MIR169a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR169r, gma-MIR159b, gma-MIR159c, gma-MIR162a, gma-MIR164a, gma-MIR167c, gma-MIR169b, gma-MIR169c, gma-MIR171a, gma-MIR390a, gma-MIR390b, gma-MIR393a, gma-MIR171b, gma-MIR482a, gma-MIR1507a, gma-MIR1508a, gma-MIR1509a, gma-MIR1510a, gma-MIR1511, gma-MIR1512a, gma-MIR1515a, osa-MIR827, osa-MIR396f, gma-MIR167d, gma-MIR396c, gma-MIR1507b, gma-MIR1510b, gma-MIR2109, gma-MIR167e, gma-MIR167f, gma-MIR172c, gma-MIR172d, gma-MIR172e, gma-MIR1509b, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, gma-MIR396d, gma-MIR482b, gma-MIR167g, gma-MIR156f, gma-MIR169d, gma-MIR172f, gma-MIR171c, gma-MIR169e, gma-MIR156g, gma-MIR159d, gma-MIR4416a, gma-MIR396e, gma-MIR156h, gma-MIR156i, gma-MIR160b, gma-MIR160c, gma-MIR160d, gma-MIR160e, gma-MIR162b, gma-MIR164b, gma-MIR164c, gma-MIR164d, gma-MIR166c, gma-MIR166d, gma-MIR166e, gma-MIR166f, gma-MIR166g, gma-MIR166h, gma-MIR168b, gma-MIR169f, gma-MIR169g, gma-MIR171d, gma-MIR171e, gma-MIR171f, gma-MIR171g, gma-MIR319d, gma-MIR319e, gma-MIR319f, gma-MIR390c, gma-MIR398c, gma-MIR408d, gma-MIR2118a, gma-MIR2118b, gma-MIR482c, gma-MIR1507c, gma-MIR171h, gma-MIR171i, gma-MIR169h, gma-MIR167h, gma-MIR169i, gma-MIR396f, gma-MIR396g, gma-MIR167i, gma-MIR171j, gma-MIR395a, gma-MIR395b, gma-MIR395c, gma-MIR397a, gma-MIR408a, gma-MIR408b, gma-MIR408c, gma-MIR156j, gma-MIR156k, gma-MIR156l, gma-MIR156m, gma-MIR156n, gma-MIR156o, gma-MIR159e, gma-MIR159f, gma-MIR162c, gma-MIR166i, gma-MIR166j, gma-MIR169j, gma-MIR169k, gma-MIR169l, gma-MIR169m, gma-MIR169n, gma-MIR171k, gma-MIR172g, gma-MIR172h, gma-MIR172i, gma-MIR172j, gma-MIR319g, gma-MIR319h, gma-MIR319i, gma-MIR319j, gma-MIR319k, gma-MIR319l, gma-MIR319m, gma-MIR396h, gma-MIR396i, gma-MIR482d, gma-MIR1512b, gma-MIR167j, gma-MIR171l, gma-MIR2111a, gma-MIR1512c, gma-MIR393b, gma-MIR399a, gma-MIR156p, gma-MIR171m, gma-MIR172k, gma-MIR171n, gma-MIR156q, gma-MIR171o, gma-MIR172l, gma-MIR169o, gma-MIR319n, gma-MIR171p, gma-MIR169p, gma-MIR156r, gma-MIR399b, gma-MIR396j, gma-MIR171q, gma-MIR156s, gma-MIR169r, gma-MIR169s, gma-MIR396k, gma-MIR2111b, gma-MIR2111c, gma-MIR166k, gma-MIR2111d, gma-MIR156t, gma-MIR482e, gma-MIR399c, gma-MIR171r, gma-MIR399d, gma-MIR399e, gma-MIR169t, gma-MIR171s, gma-MIR166l, gma-MIR171t, gma-MIR2111e, gma-MIR2111f, gma-MIR171u, gma-MIR399f, gma-MIR399g, gma-MIR395d, gma-MIR395e, gma-MIR395f, gma-MIR395g, gma-MIR166m, gma-MIR169u, gma-MIR399h, gma-MIR156u, gma-MIR156v, gma-MIR156w, gma-MIR156x, gma-MIR156y, gma-MIR156z, gma-MIR156aa, gma-MIR156ab, gma-MIR160f, gma-MIR164e, gma-MIR164f, gma-MIR164g, gma-MIR164h, gma-MIR164i, gma-MIR164j, gma-MIR164k, gma-MIR166n, gma-MIR166o, gma-MIR166p, gma-MIR166q, gma-MIR166r, gma-MIR166s, gma-MIR166t, gma-MIR166u, gma-MIR169v, gma-MIR390d, gma-MIR390e, gma-MIR390f, gma-MIR390g, gma-MIR393c, gma-MIR393d, gma-MIR393e, gma-MIR393f, gma-MIR393g, gma-MIR393h, gma-MIR393i, gma-MIR393j, gma-MIR393k, gma-MIR395h, gma-MIR395i, gma-MIR395j, gma-MIR395k, gma-MIR395l, gma-MIR395m, gma-MIR1515b, gma-MIR398d, gma-MIR319o, gma-MIR319p, gma-MIR399i, gma-MIR167k, gma-MIR319q, gma-MIR167l, gma-MIR399j, gma-MIR399k, gma-MIR169w, gma-MIR399l, gma-MIR399m, gma-MIR399n, gma-MIR399o
It was reported that five conserved miRNAs (miR159, miR162, miR166, miR390, and miR399) presented similar expression levels in root apexes and nodules, but miR169, miR171, miR393, and miR396 enriched in root tips [41]. [score:3]
[1 to 20 of 1 sentences]
24
[+] score: 3
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR156k, osa-MIR156l, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR396e, osa-MIR528, osa-MIR529a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR529b, osa-MIR169r, osa-MIR827, osa-MIR396f, bdi-MIR171a, bdi-MIR167a, bdi-MIR397a, bdi-MIR156a, bdi-MIR172d, bdi-MIR166a, bdi-MIR171c, bdi-MIR169b, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, bdi-MIR169d, bdi-MIR169i, bdi-MIR395a, bdi-MIR169j, bdi-MIR166f, bdi-MIR171b, bdi-MIR390a, bdi-MIR160a, bdi-MIR528, bdi-MIR395b, bdi-MIR166d, bdi-MIR171d, bdi-MIR167b, bdi-MIR166b, bdi-MIR160b, bdi-MIR164b, bdi-MIR167c, bdi-MIR396d, bdi-MIR169k, bdi-MIR168, bdi-MIR160c, bdi-MIR396c, bdi-MIR167d, bdi-MIR156b, bdi-MIR169g, bdi-MIR160d, bdi-MIR160e, bdi-MIR396e, bdi-MIR156c, bdi-MIR172a, bdi-MIR396a, bdi-MIR166e, bdi-MIR166c, bdi-MIR169e, bdi-MIR394, bdi-MIR398a, bdi-MIR164a, bdi-MIR393a, bdi-MIR169a, bdi-MIR172b, bdi-MIR156d, bdi-MIR393b, bdi-MIR169h, bdi-MIR396b, bdi-MIR169c, bdi-MIR395c, bdi-MIR827, bdi-MIR166g, bdi-MIR319a, bdi-MIR395d, bdi-MIR398b, bdi-MIR164c, bdi-MIR169f, bdi-MIR162, bdi-MIR164e, bdi-MIR164f, bdi-MIR395m, bdi-MIR395e, bdi-MIR395f, bdi-MIR395g, bdi-MIR395h, bdi-MIR395j, bdi-MIR395k, bdi-MIR395l, bdi-MIR395n, bdi-MIR529, bdi-MIR319b, bdi-MIR397b, bdi-MIR156e, bdi-MIR156f, bdi-MIR156g, bdi-MIR156h, bdi-MIR156i, bdi-MIR166h, bdi-MIR166i, bdi-MIR167e, bdi-MIR395o, bdi-MIR395p, bdi-MIR156j, bdi-MIR160f, bdi-MIR166j, bdi-MIR167f, bdi-MIR167g, bdi-MIR169l, bdi-MIR169m, bdi-MIR169n, bdi-MIR171e, bdi-MIR171f, bdi-MIR395q
The miR160a, miR164d, miR169f, miR172a, miR172b, miR319, miR390, miR393, miR394, miR395a, miR397a, miR529 and miR827 were moderately expressed, and were represented by the number of sequences varying between 10 and 100. [score:3]
[1 to 20 of 1 sentences]
25
[+] score: 3
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR162a, osa-MIR166c, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR393a, osa-MIR396c, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160f, osa-MIR164d, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR393b, osa-MIR172d, osa-MIR167j, osa-MIR419, osa-MIR444a, osa-MIR528, osa-MIR812a, osa-MIR812b, osa-MIR812c, osa-MIR812d, osa-MIR812e, osa-MIR818a, osa-MIR818b, osa-MIR818c, osa-MIR818d, osa-MIR818e, osa-MIR529b, osa-MIR1425, osa-MIR1429, osa-MIR1431, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR1436, osa-MIR1441, osa-MIR531b, osa-MIR1846d, osa-MIR1848, osa-MIR1850, osa-MIR1853, osa-MIR1860, osa-MIR812f, osa-MIR812g, osa-MIR812h, osa-MIR812i, osa-MIR812j, osa-MIR1319a, osa-MIR2096, osa-MIR2864, osa-MIR812k, osa-MIR812l, osa-MIR812m, osa-MIR3979, osa-MIR812n, osa-MIR812o, osa-MIR5161, osa-MIR5338, osa-MIR5512a, osa-MIR812p, osa-MIR812q, osa-MIR812r, osa-MIR812s, osa-MIR812t, osa-MIR812u, osa-MIR812v, osa-MIR1319b, osa-MIR5512b, osa-MIR818f
The miRNAs with the lowest expression levels in CWR-F2 included osa-miR162a, miR167e,I, miR390, miR529b, miR808, miR1436, miR2123, miR5161, oru-miR97, oru-miR222, and oru-miR223. [score:3]
[1 to 20 of 1 sentences]
26
[+] score: 1
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR408, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR413, osa-MIR414, osa-MIR415, osa-MIR416, osa-MIR417, osa-MIR418, osa-MIR419, osa-MIR426, osa-MIR396e, osa-MIR444a, osa-MIR530, osa-MIR535, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR818a, osa-MIR818b, osa-MIR818c, osa-MIR818d, osa-MIR818e, osa-MIR820a, osa-MIR820b, osa-MIR820c, osa-MIR1423, osa-MIR1425, osa-MIR1427, osa-MIR1428a, osa-MIR1429, osa-MIR1430, osa-MIR1431, osa-MIR1432, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR810b, osa-MIR1435, osa-MIR1436, osa-MIR1437a, osa-MIR1440a, osa-MIR1441, osa-MIR1442, osa-MIR1439, osa-MIR1428b, osa-MIR1428c, osa-MIR1428d, osa-MIR1428e, osa-MIR1428f, osa-MIR1428g, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, osa-MIR1440b, osa-MIR818f, osa-MIR1437b
Of these, 7 miRNA families, i. e., miR156/157, miR160, miR159, miR319, miR165/166, miR390 and miR408 have been also found in primitive land plants such as Physcometrella and Selaginella suggesting that these are deeply conserved [18- 21]. [score:1]
[1 to 20 of 1 sentences]
27
[+] score: 1
In Arabidopsis there are four families of tasiRNA genes (TAS loci), and different miRNAs corresponded to different TAS genes (TAS1, TAS2 corresponding miR173, TAS3 corresponding miR390, and TAS4 corresponding miR828) (Chapman and Carrington, 2007). [score:1]
[1 to 20 of 1 sentences]
28
[+] score: 1
Genomic fragments of 650–850-bp containing the binding sites of the miRNAs (miR156::Os08g39890, miR159::Os01g59600, miR390::Os02g10100, miR395::Os03g09930, miR408::Os03g15340 and miR820a::Os03g02010) were amplified and sequenced (Accession nos. [score:1]
[1 to 20 of 1 sentences]
29
[+] score: 1
Some miRNAs such as ogl-miR156l, ogl-miR166c, ogl-miR166k, ogl-miR168a, ogl-miR167i, ogl-miR171f, ogl-miR1846d of control library and ogl-miR408, ogl-miR528, ogl-miR156, ogl-miR390, ogl-miR396c of treated library had higher reads than their complementary stand, respectively (Tables  S2 and S3). [score:1]
[1 to 20 of 1 sentences]
30
[+] score: 1
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR394, osa-MIR395f, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398b, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR396e, osa-MIR444a, osa-MIR528, osa-MIR529a, osa-MIR810a, osa-MIR812a, osa-MIR812b, osa-MIR812c, osa-MIR812d, osa-MIR812e, osa-MIR818a, osa-MIR818b, osa-MIR818c, osa-MIR818d, osa-MIR818e, osa-MIR820a, osa-MIR820b, osa-MIR820c, osa-MIR529b, osa-MIR1425, osa-MIR1430, osa-MIR1432, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR810b, osa-MIR1440a, osa-MIR531b, osa-MIR1847, osa-MIR1848, osa-MIR1861a, osa-MIR1861b, osa-MIR1861c, osa-MIR1861d, osa-MIR1861e, osa-MIR1861f, osa-MIR1861g, osa-MIR1861h, osa-MIR1861i, osa-MIR1861j, osa-MIR1861k, osa-MIR1861l, osa-MIR1861m, osa-MIR1861n, osa-MIR1865, osa-MIR812f, osa-MIR1874, osa-MIR812g, osa-MIR812h, osa-MIR812i, osa-MIR812j, osa-MIR1320, osa-MIR827, osa-MIR2090, osa-MIR396f, osa-MIR2118c, osa-MIR2863a, osa-MIR2863b, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR812k, osa-MIR812l, osa-MIR812m, osa-MIR3979, osa-MIR3980a, osa-MIR3980b, osa-MIR812n, osa-MIR812o, osa-MIR3981, osa-MIR5082, osa-MIR2863c, osa-MIR5337a, osa-MIR812p, osa-MIR812q, osa-MIR812r, osa-MIR812s, osa-MIR812t, osa-MIR812u, osa-MIR812v, osa-MIR1440b, osa-MIR818f, osa-MIR1861o
2, miR390-3p, miR531b, miR1430, miR1847.2, miR1865-5p, miR1874-3p, and miR5082, whereas 24 miRNAs were identified that were significantly accumulated in the whole roots, including miR156, miR164, miR166, osa-miR169, miR171, miR393, miR408, miR528, miR529, osa-miR812, miR1320, osa-miR1432, miR1861, miR3979, etc. [score:1]
[1 to 20 of 1 sentences]
31
[+] score: 1
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR414, osa-MIR419, osa-MIR435, osa-MIR396e, osa-MIR530, osa-MIR535, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR1426, osa-MIR169r, osa-MIR1436, osa-MIR1440a, osa-MIR827, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, ctr-MIR156, ctr-MIR166, ctr-MIR319, ctr-MIR164, ctr-MIR167, ctr-MIR171, osa-MIR395x, osa-MIR395y, osa-MIR1440b
Additionally, fifteen miRNA families namely miR156, miR159, miR160, miR162, miR164, miR166, miR167, miR168, miR169, miR171, miR172, miR390, miR394, miR403, and miR1446, were found to have some thousands to tens of thousands of redundancies while four families (miR395, miR396, miR397, miR414, and miR827), had more than one hundred redundancies. [score:1]
[1 to 20 of 1 sentences]
32
[+] score: 1
LncRNA1127 is the eTM of sly-miR390-3p, which accumulates more than sly-miR390-5p (Kravchik et al., 2014). [score:1]
[1 to 20 of 1 sentences]
33
[+] score: 1
Another nine Vvi-miRNA families (Vvi-miR162, Vvi-miR168, Vvi-miR390, Vvi-miR397, Vvi-miR408, Vvi-miR477, Vvi-miR479, Vvi-miR482, and Vvi-miR828) had only one member each. [score:1]
[1 to 20 of 1 sentences]
34
[+] score: 1
Arabidopsis DCL4 has been shown to function redundantly with DCL2 and DCL3 to process SHL2(OsRDR6) generated double stranded RNA into tasiRNA The RNA template for SHL2 is in turn produced by the activity of miR173 and miR390 generated by DCL1, HYL1, HEN1 and AGO1 [30]. [score:1]
[1 to 20 of 1 sentences]
35
[+] score: 1
AGO7 is involved in the generation of ta-siRNAs from TAS3 by collaborating with miR390 in Arabidopsis[18]. [score:1]
[1 to 20 of 1 sentences]
36
[+] score: 1
2, osa-miR390-3p, osa-miR531b, osa-miR1430, osa-miR1847.2, osa-miR1865-5p, osa-miR1874-3p and osa-miR5082) showed high abundances in the root tips (Additional file 1), and 7,446 sRNAs including 24 miRNA sequences (osa-miR156l-5p, osa-miR164d, osa-miR164e, osa-miR166k-3p/osa-miR166l-3p, osa-miR169f. [score:1]
[1 to 20 of 1 sentences]
37
[+] score: 1
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR394, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319a, osa-MIR319b, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR396e, osa-MIR528, osa-MIR169r, osa-MIR827, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR5083, ppe-MIR171f, ppe-MIR394a, ppe-MIR828, ppe-MIR171h, ppe-MIR171a, ppe-MIR171e, ppe-MIR169e, ppe-MIR319a, ppe-MIR319b, ppe-MIR171g, ppe-MIR171b, ppe-MIR171c, ppe-MIR156a, ppe-MIR156b, ppe-MIR156c, ppe-MIR156d, ppe-MIR156e, ppe-MIR156f, ppe-MIR156g, ppe-MIR156h, ppe-MIR156i, ppe-MIR159, ppe-MIR160a, ppe-MIR160b, ppe-MIR162, ppe-MIR164a, ppe-MIR164b, ppe-MIR164c, ppe-MIR164d, ppe-MIR166a, ppe-MIR166b, ppe-MIR166c, ppe-MIR166d, ppe-MIR166e, ppe-MIR167a, ppe-MIR167b, ppe-MIR167c, ppe-MIR167d, ppe-MIR168, ppe-MIR169a, ppe-MIR169b, ppe-MIR169c, ppe-MIR169d, ppe-MIR169f, ppe-MIR169g, ppe-MIR169h, ppe-MIR169i, ppe-MIR169j, ppe-MIR169k, ppe-MIR169l, ppe-MIR171d, ppe-MIR172a, ppe-MIR172b, ppe-MIR172c, ppe-MIR172d, ppe-MIR390, ppe-MIR393a, ppe-MIR393b, ppe-MIR394b, ppe-MIR396a, ppe-MIR396b, ppe-MIR397, ppe-MIR399a, ppe-MIR399b, ppe-MIR399c, ppe-MIR399d, ppe-MIR399e, ppe-MIR399f, ppe-MIR399g, ppe-MIR399h, ppe-MIR399i, ppe-MIR399j, ppe-MIR399k, ppe-MIR399l, ppe-MIR399m, ppe-MIR399n, ppe-MIR403, ppe-MIR827, ppe-MIR858
Among the miRNA families in peach, miR156, miR159, miR160, miR166, miR171, miR319, miR390 and miR396 showed a high conservation in plants, indicating that these 12 peach miRNA families are ancient. [score:1]
[1 to 20 of 1 sentences]