sort by

22 publications mentioning bta-mir-126

Open access articles that are associated with the species Bos taurus and mention the gene name mir-126. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 326
1006942.g003 Fig 3Expression levels of miR-126-5p and its target genes dlk-1 and jip-2. A. Expression levels of the established miR-126-5p-target dlk1 monitored as a positive control. [score:9]
Clearly, transfection with inhibitor suppresses miR-126-5p expression, and transfection of the mimic greatly increased miR-126-5p expression. [score:9]
We overexpressed and inhibited levels of miR-126-5p by transfecting infected leukocytes with miR-126-5p agonists (mimic) and antagonists (inhibitor) (Fig 1D, middle & right). [score:7]
This identified miR-126-5p as a miRNA upregulated after T. annulata infection of B lymphocytes in 2 independent cell lines (TBL20 and TBL3) and down-regulated in attenuated macrophages that have lost their hyper-disseminating phenotype. [score:7]
miR-126-5p is upregulated upon infection of B cells and in virulent Theileria-infected macrophages, and becomes significantly down-regulated upon attenuation of their dissemination capacity (Fig 1C, right and D, left). [score:7]
As expected, transfection of T. annulata-infected TBL20 B cells with antagonist suppressed miR-126-5p expression, where by contrast, transfection with the agonist increased miR-126-5p expression. [score:7]
We demonstrated that JIP-2 is a novel miR-126-5p target gene and that infection by increasing miR-126-5p levels suppresses JIP-2 expression in virulent macrophages. [score:7]
We show that miR-126-5p in virulent macrophages directly targets and suppresses a cytosolic scaffold protein called JNK-Interacting Protein-2 (JIP-2), so liberating JNK1 to enter the nucleus and phosphorylate c-Jun. [score:6]
We now demonstrate that T. annulata infection of B cells and macrophages leads to the up-regulation of miR-126-5p that ablates JIP-2 expression liberating cytosolic JNK1 to translocate to the nucleus and phosphorylate c-Jun. [score:6]
Since miR-126-5p upregulation represses levels of JIP-2 it should facilitate JNK translocation to the nucleus to phosphorylate c-Jun and activate AP-1 -driven transcription of target genes such as c-jun. [score:6]
A. Expression levels of the established miR-126-5p-target dlk1 monitored as a positive control. [score:5]
Inhibition of miR-126-5p expression in virulent macrophages (Vi) decreased matrigel traversal, whereas treatment with mimic (Vm) increased matrigel traversal. [score:5]
Relative expression of mmp9 in BL20/TBL20 B cells before and after transfection with miR126-5p inhibitor (TBL20i). [score:5]
C. Relative expression of c-jun in virulent and attenuated Theileria-infected macrophages before and after transfection with the miR-126-5p inhibitor (Vi), mimic (Am) and an irrelevant control miR (Vc & Ac, NCSTUD002). [score:5]
Indeed, transfection of miR-126-5p mimic (Am) in attenuated macrophages increased c-jun transcript levels, whereas inhibition of miR-126-5p (Vi) in virulent macrophages decreased expression of c- jun (Fig 4C). [score:5]
We then assessed Dlk1 expression following transfection of virulent macrophages with the miR-126-5p inhibitor sequences. [score:5]
Inhibition of miR-126-5p expression increased JIP-2 levels and decreased AP-1 -driven transcription in virulent macrophages, whereas the stimulation of miR-126-5p increased AP-1 -driven transcription of mmp9 in attenuated macrophages (Fig 6A and 6B). [score:5]
Expression levels of miR-126-5p target genes. [score:5]
Upon inhibition of miR-126-5p expression the amount of Dlk1 transcripts increased to above levels observed for attenuated macrophages (Fig 3A, left). [score:5]
Although miR-126-5p and miR-126-3p are derived from the same precursor miRNA, only miR-126-5p and not miR-126-3p targets DLK1 suggesting they have distinct target-gene specificities [24]. [score:5]
Expression levels of miR-126-5p and its target genes dlk-1 and jip-2.. [score:5]
Relative expression of mmp9 in infected macrophages (V and A) before and after transfection with miR126-5p inhibitor (Vi), mimic (Am) and an irrelevant miRNA control (Vc, NCSTUD002). [score:5]
An increase in the level of luciferase activity occurred upon inhibition of miR-126-5p in virulent macrophages and a decrease in luciferase activity when miR-126-5p was overexpressed in attenuated macrophages (Fig 3B, right). [score:5]
Increase in the level of JIP-2 transcripts occurred upon inhibition of miR-126-5p in virulent macrophages and a decrease in JIP-2 expression when attenuated macrophages were transfected with the miR-126-5p mimic sequence (Fig 3B, left). [score:5]
In macrophages attenuated for dissemination miR-126-5p levels are lower and transfection with the agonist raised miR-126-5p expression, whereas transfection of virulent disseminating macrophages with the antagonist lowered miR-126-5p expression. [score:5]
We focused on miR-126-5p as its expression was induced by infection, but diminished in attenuated macrophages that had lost their disease causing disseminating phenotype. [score:5]
Overexpression of miR-126-5p mimic in attenuated macrophages (Am) increased phospho-Ser73-c-Jun staining (green), whereas its inhibition (Vi) in virulent macrophages abolished phospho-Ser73-c-Jun. [score:5]
To confirm that miR-126-5p regulates dissemination through modulating AP-1 -driven transcription, mmp9 expression was monitored by RT-PCR (Fig 6B). [score:4]
miR-126-5p expression regulates the level of JIP-2 in Theileria-infected macrophages. [score:4]
miR-126-5p expression regulates levels of JIP-2 in Theileria-infected macrophages. [score:4]
This demonstrates that miR-126 by modulating JIP-2 expression regulates the amount of JNK bound to JIP-2 in the cytosol. [score:4]
This led us to test whether JIP-2 is a novel direct target gene of miR-126-5p. [score:4]
Relative expression levels of JIP-2 in virulent macrophages (V) compared to virulent macrophages transfected with inhibitor of miR-126-5p (Vi) and attenuated macrophages (A) and attenuated macrophages transfected with the mimic of miR-126-5p (Am). [score:4]
Relative expression level of dlk1 in virulent macrophages (V) compared to virulent macrophages transfected with inhibitor of miR-126 (Vi) and attenuated macrophages (A). [score:4]
Taken together, this indicates that JIP-2 expression is regulated by variations in miR-126-5p levels and confirms that the 3’-UTR of JIP-2 mRNA possess a bona fide miR-126-5p seed sequence. [score:4]
Upon inhibition of miR-126-5p transcription of mmp9 decreased in both virulent macrophages and TBL20 B cells (Fig 6B). [score:3]
In T. annulata-infected macrophages miR-126-5p levels therefore do not depend on the degree of EGFL7 expression [48], nor on the amount of precursor miR-126, rather infection impacts on the capacity of AGO2 to load miR-126-5p, where it’s protected from degradation, while miR-126-3p is not loaded and is consequently degraded. [score:3]
miR-126 is located within the 7th intron of the EGFL7 gene [37– 39] and EGFL7 is equivalently expressed in virulent and attenuated macrophages (S1 Fig). [score:3]
Immunofluorescence images obtained with anti-phospho-Ser73 c-Jun antibody using virulent (V) and attenuated (A) macrophages transfected or not with the inhibitor (Vi) and mimic of miR-126-5p (Am). [score:3]
Moreover, transfection of TBL20 with the miR-126-5p inhibitor also increased Dlk1 protein levels to those observed for non-infected BL20 B cells (Fig 3A, right). [score:3]
Due to high miR-126-5p levels JIP-2 is difficult to detect in virulent macrophages, but when they are treated with the miR-126-5p inhibitor JIP-2 is readily observed at levels equivalent to those of attenuated macrophages (Fig 4A and 4B). [score:3]
T. annulata-infection of B cells and macrophages results in increased levels of miR-126-5p, while miR-126-3p levels remain low (Fig 1C, right), despite both EGFL7 (S1 Fig) and pre-miR-126 being equivalently expressed in virulent and attenuated macrophages (Fig 2A). [score:3]
The mixed lineage kinase dual leucine zipper kinase-1 (DLK1) is an established target of miR-126-5p [24]. [score:3]
B. Immunoprecipitation analyses with anti-JIP-2 using whole cell lysates derived from virulent (V) and attenuated (A) Theileria-infected macrophages transfected or not with a miR-126-5p inhibitor (Vi), mimic (Am) and an irrelevant miR control (Ac). [score:3]
1006942.g002 Fig 2. A. Relative expression of pre-miR-126 in virulent (V) and attenuated (A) Theileria-infected macrophages. [score:3]
By demonstrating that infection -induced miR-126-5p expression ablates JIP-2 and diminishes the cytosolic localisation of JNK1 we provide a mechanism that contributes to constitutive c-Jun phosphorylation, increased MMP9 production and a greater capacity of Theileria-transformed leukocytes to disseminate (Fig 7). [score:3]
Clearly, heightened miR-126-5p levels suppress JIP-2 liberating JNK1 to translocate to the nucleus and induce AP-1 -driven transcription of mmp9 to promote the dissemination of virulent Theileria-transformed macrophages. [score:3]
As miR-126-5p regulates JIP-2 levels it determines whether JNK1 is retained in the cytosol and consequently it directly impacts on nuclear c-Jun phosphorylation and AP-1 transactivation. [score:3]
Validation of miR-126-5p expression levels. [score:3]
Furthermore, in attenuated macrophages ablation of JIP-2 by overexpression of miR-126-5p mimic (Am) increased c-Jun phosphorylation (Fig 5A, left). [score:3]
By contrast, transfection of miR-126-5p inhibitor (Vi) ablates c-Jun phosphorylation in virulent macrophages. [score:3]
Dlk1 has been described as a miR-126-5p target gene [24]. [score:3]
By contrast, in attenuated macrophages AGO2 tyrosine phosphorylation increases and miR-126-5p levels drop leading to a regain in JIP-2 expression that retains JNK1 in the cytosol. [score:3]
qRT-PCR confirmation of the cellular levels of miR-126-5p following transfection of virulent macrophages with inhibitor (Vi) and attenuated macrophages with mimic sequences (Am). [score:3]
A. Relative expression of pre-miR-126 in virulent (V) and attenuated (A) Theileria-infected macrophages. [score:3]
Inhibition of miR-126-5p in virulent macrophages (Vi) increased the formation of the JIP-2/JNK complex, whereas stimulation of miR-126-5p in attenuated macrophages (Am) decreased complex formation. [score:3]
Inflammation stemming from T. annulata infection likely explains induction of EGFL7 and pre-miR-126 expression, but why miR-126-5p, rather than miR-126-3p, is loaded onto AGO2 is unknown and will animate future studies. [score:3]
Thus, in virulent disseminating macrophages Theileria -mediated transformation induces miR-126-5p that represses both JIP-2 and DLK1 expression reducing complex formation below detection levels. [score:3]
Moreover, the 3’-UTR region harboring the identified miR-126-5p seed sequence of bovine JIP-2 was subcloned into the psiCHECK-2 (Promega, # C8021) and then transfected into Theileria-infected macrophages together with the mimic or inhibitor of miR-126-5p and Renilla luciferase activity monitored. [score:3]
A. AP-1-(3X-TRE) -driven luciferase activity in virulent macrophages is decreased upon inhibition of miR-126-5p (Vi). [score:3]
qRT-PCR confirmation of the cellular levels of miR-126-5p in TBL20 following transfection with mimic (TBL20m) or inhibitor (TBL20i) sequences. [score:3]
1006942.g006 Fig 6 A. AP-1-(3X-TRE) -driven luciferase activity in virulent macrophages is decreased upon inhibition of miR-126-5p (Vi). [score:3]
D. Relative expression of miR-126-5p in AGO2 precipitates of virulent (V) and attenuated (A) Theileria-infected macrophages. [score:3]
By contrast, in attenuated macrophages, where miR-126-5p expression is reduced, augmented JIP-2 retains JNK1 in the cytosol leading to decreased nuclear c-Jun phosphorylation, ablated MMP9 production and dampened traversal of matrigel. [score:3]
To this end, transcript levels of JIP-2 were estimated in virulent and attenuated macrophages transfected with miR-126-5p inhibitor and mimic sequences. [score:3]
Importantly, inhibition of miR-126-5p in virulent macrophages increased detection of JIP-2-JNK complexes. [score:3]
A. Immunoprecipitation analyses with anti-JIP-2 antibodies using whole cell lysates derived from virulent (V) Theileria-infected macrophages transfected or not with the inhibitor of miR-126-5p (Vi). [score:3]
miR-126-5p by modulating JIP-2 levels regulates the JNK>c-Jun pathway to sustain AP-1 -driven transcription. [score:2]
Finally, given that miR-126-5p is deregulated in many cancers; reagents that manipulate miR-126-5p levels could be discussed as tools for cancer therapy. [score:2]
Therefore, Dlk1 transcripts were examined and found reduced in virulent compared to attenuated macrophages (Fig 3A, left) inversely correlating with the higher level of expression of miR-126-5p in virulent macrophages (Fig 1C, right). [score:2]
Thus, changes in miR-126-5p levels alter the degree of AP-1 transactivation in Theileria-infected macrophages through modulating JNK1 retention in the cytosol via regulation of JIP-2 levels. [score:2]
qRT-PCR confirmation of the relative expression of miR-126-5p in TBL20 compared to BL20 B lymphocytes. [score:2]
Protein level of DLK1 in TBL20 cells compared to BL20 cells and TBL20 cells transfected with miR-126-5p inhibitor (TBL20i) B. Left & right. [score:2]
miR-126-5p regulates the JNK phosphorylation of c-Jun by modulating JIP-2 levels. [score:2]
miR-126-5p regulates the JNK1>AP-1 pathway by modulating JIP-2 levels that impact on matrigel traversal of infected leukocytes. [score:2]
Mo del proposing how Grb2 recruits PTP1B to AGO2 decreasing its tyrosine phosphorylation leading to loading and protection from degradation of miR-126-5p. [score:1]
All tested miRNAs, including miR-126-5p, confirmed the miRNA sequencing data for DE. [score:1]
Grb2 recruits PTP1B to AGO2 ablating its tyrosine phosphorylation rendering it permissive for miR-126-5p loading. [score:1]
In virulent macrophages, an adaptor protein called Grb2 recruits the tyrosine phosphatase PTP1B to AGO2 so decreasing AGO2 phosphorylation to increase miR-126-5p levels. [score:1]
When attenuated macrophages are transfected with a miR-126-5p mimic (Am), AP-1 -driven luciferase activity increased. [score:1]
miR-126 and miR-126*: new players in cancer. [score:1]
Thus, variations in miR-126-5p levels underpin both virulent hyper-dissemination and attenuation of T. annulata -transfected macrophages. [score:1]
miR-126-5p refers to the 5′ part of the transcript that is the analogous strand to miR-126-3p, which binds to the main miR-126 transcript in the stem loop structure of the pre-miRNA [38]. [score:1]
By contrast, stimulation of miR-126-5p levels raised mmp9 transcripts in attenuated macrophages (Fig 6B). [score:1]
Thus, high miR-126-5p levels contribute to Theileria-transformed leukocyte dissemination and reduced miR-126-5p levels contribute to attenuation of the virulent hyper-dissemination phenotype. [score:1]
However, blockade of miR-126-5p in virulent macrophages diminished their capacity to traverse matrigel, while in contrast, stimulation of miR-126-5p increased matrigel traversal (Fig 6C). [score:1]
This suggested that only miR-126-5p, and not miR-126-3p, is taken up by AGO2 and protected from degradation [40]. [score:1]
miR-126-5p ablation of JIP-2 increases AP-1 transactivation and augments matrigel traversal of transformed leukocytes. [score:1]
Human miR-126 (which usually refers to the 3′ part of the transcript, also called miR-126-3p) is located within the 7th intron of EGFL7 gene [37– 39]. [score:1]
Conversely, in attenuated macrophages miR-126-5p levels drop, JIP-2 complexes reform retaining JNK in the cytosol leading to reduced nuclear c-Jun phosphorylation, dampened AP-1 -driven transcription of mmp9 and reduced traversal of matrigel. [score:1]
In virulent macrophages Grb2 recruits PTP1B to de-phosphorylate AGO2 that facilitates uptake of miR-126-5p, whereas in attenuated macrophages the amount of PTP1B associated with AGO2 diminishes with a concomitant increase in AGO2 phosphorylation and decrease in bound miR-126-5p (Fig 7). [score:1]
The ensemble demonstrates how high miR-126-5p levels in virulent macrophages significantly contribute to their hyper-disseminating phenotype. [score:1]
By contrast, in attenuated macrophages miR-126-5p levels drop consistent with it no longer being associated with AGO2. [score:1]
1006942.g007 Fig 7Non-degraded miR-126-5p ablates JIP-2 and DLK-1 and releases JNK to translocate to the nucleus and phosphorylate c-Jun. [score:1]
qRT-PCR confirmation of miR-126-5p and miR-126-3p levels in Theileria-infected macrophages. [score:1]
Non-degraded miR-126-5p ablates JIP-2 and DLK-1 and releases JNK to translocate to the nucleus and phosphorylate c-Jun. [score:1]
Thus, miR-126-5p-provoked reduction in JIP-2 levels activates JNK1>AP-1 signalling and provides an epigenetic explanation for both T. annulata -induced leukocyte transformation, and for the attenuated phenotype of live vaccines against tropical theileriosis. [score:1]
By contrast, in attenuated macrophages transfected with the miR-126-5p mimic (Am) JIP-2-JNK complexes were difficult to detect (Fig 4B, middle). [score:1]
miR-126-5p was readily detected in AGO2 precipitates only from virulent macrophages, where AGO2 is less tyrosine phosphorylated (Fig 2B, left middle panel). [score:1]
In this mo del miR-126-3p is not loaded onto AGO2 and thus is not protected from degradation, explaining the low levels of miR-126-3p detected in virulent and attenuated macrophages. [score:1]
The miRNA of interest, miR-126-5p, is framed in blue. [score:1]
[1 to 20 of 101 sentences]
2
[+] score: 15
From this screened target set, we found that let-7b, mir-15b, mir-18a, mir-29a, mir-101, mir-125b, mir-126, mir-143, mir-145, mir-199a and mir-222 to have the highest number and overlapping targets (Figure 6). [score:5]
Five miRNAs (bta-mir-126, bomir-F0132, bomir-A0321 and bomir-F1821) were found to be expressed at similar level in all experimental tissues. [score:3]
which are identified by our new screening approach, were already validated in wet lab experiments and reported as targets of multiple miRNAs (miR-145, miR-125b, miR-126 and miR-29) [69- 73]. [score:3]
The expression of all new miRNAs including nine annotated miRNAs (let-7b, mir-15b, mir-18a, mir-29a, mir-125b, mir-126, mir-145, mir-199a and mir-222) in 11 different bovine tissues were analyzed using semi-quantitative RT-PCR (details in Figure 4, Table 2 and Additional file 2). [score:3]
Most of the miRNAs were cloned multiple times, in which let-7a, let-7b, let-7c, miR-21, miR-23b, miR-24, miR-27a, miR-126 and miR-143 were cloned 10, 28, 13, 4, 11, 7, 6, 4 and 11 times, respectively. [score:1]
[1 to 20 of 5 sentences]
3
[+] score: 10
00×10 [−9] 3.72×10 [−8] bta-miR-92b 1.752.44×10 [−8] 4.52×10 [−7] bta-miR-126-3p 1.633.12×10 [−5] 0.00033 bta-miR-126-5p 1.594.97×10 [−6] 7.36×10 [−5] Subsequently for each individual time-point, the read s counts of the top six differentially expressed miRNAs identified during the pairwise comparisons were plotted to gain further insight into their expression profiles (Fig 2). [score:5]
00×10 [−9] 3.72×10 [−8] bta-miR-92b 1.752.44×10 [−8] 4.52×10 [−7] bta-miR-126-3p 1.633.12×10 [−5] 0.00033 bta-miR-126-5p 1.594.97×10 [−6] 7.36×10 [−5] Subsequently for each individual time-point, the read s counts of the top six differentially expressed miRNAs identified during the pairwise comparisons were plotted to gain further insight into their expression profiles (Fig 2). [score:5]
[1 to 20 of 2 sentences]
4
[+] score: 7
Other miRNAs from this paper: bta-mir-15a, bta-mir-212, bta-mir-486
Overexpression of certain miRNAs, such as miR-101a, miR-126–3p, and miR-15a, suppresses mammary gland epithelial cell differentiation in mice, thus inhibiting mammary gland differentiation [7– 9]. [score:7]
[1 to 20 of 1 sentences]
5
[+] score: 7
Other miRNAs from this paper: hsa-mir-126, hsa-mir-155, bta-mir-155
Theileria-infection also induces high levels of miR-155 that regulates a feedback loop leading to sustained c-Jun protein levels [28] and infection upregulates miR-126-5p levels leading to suppression of JIP-2 liberating JNK1 to translocate to the nucleus and phosphorylate c-Jun [29]. [score:7]
[1 to 20 of 1 sentences]
6
[+] score: 7
Other miRNAs from this paper: bta-mir-26a-2, bta-mir-101-2, bta-mir-148a, bta-mir-30d, bta-mir-181a-2, bta-mir-27b, bta-mir-30b, bta-mir-142, bta-mir-30e, bta-mir-148b, bta-mir-186, bta-mir-191, bta-mir-22, bta-mir-30a, bta-mir-150, bta-mir-30c, bta-mir-101-1, bta-mir-141, bta-mir-146a, bta-mir-223, bta-mir-26a-1, bta-mir-30f, bta-mir-181a-1, bta-mir-2284i, bta-mir-2285a, bta-mir-2284s, bta-mir-2285d, bta-mir-2284l, bta-mir-2284j, bta-mir-2284t, bta-mir-2285b-1, bta-mir-2284d, bta-mir-2284n, bta-mir-2284g, bta-mir-2284p, bta-mir-2284u, bta-mir-2284f, bta-mir-2284a, bta-mir-2284k, bta-mir-2284c, bta-mir-2284v, bta-mir-2285c, bta-mir-2284q, bta-mir-2284m, bta-mir-2284b, bta-mir-2284r, bta-mir-2284h, bta-mir-2284o, bta-mir-2284e, bta-mir-1388, bta-mir-2898, bta-mir-2904-1, bta-mir-2904-2, bta-mir-2904-3, bta-mir-2284w, bta-mir-2284x, bta-mir-148c, bta-mir-2284y-1, bta-mir-2285e-1, bta-mir-2285e-2, bta-mir-2285f-1, bta-mir-2285f-2, bta-mir-2285g-1, bta-mir-2285h, bta-mir-2285i, bta-mir-2285j-1, bta-mir-2285j-2, bta-mir-2285k-1, bta-mir-2285l, bta-mir-2285o-1, bta-mir-2285o-2, bta-mir-2285n-1, bta-mir-2285n-2, bta-mir-2285p, bta-mir-2285m-1, bta-mir-2285m-2, bta-mir-2284y-2, bta-mir-2285n-3, bta-mir-2285n-4, bta-mir-2284y-3, bta-mir-2285o-3, bta-mir-2285o-4, bta-mir-2285m-3, bta-mir-2284y-4, bta-mir-2284y-5, bta-mir-2284y-6, bta-mir-2285m-4, bta-mir-2285o-5, bta-mir-2285m-5, bta-mir-2285n-5, bta-mir-2285n-6, bta-mir-2284y-7, bta-mir-2285n-7, bta-mir-2284z-1, bta-mir-2284aa-1, bta-mir-2285k-2, bta-mir-2284z-3, bta-mir-2284aa-2, bta-mir-2284aa-3, bta-mir-2285k-3, bta-mir-2285k-4, bta-mir-2284z-4, bta-mir-2285k-5, bta-mir-2284z-5, bta-mir-2284z-6, bta-mir-2284z-7, bta-mir-2284aa-4, bta-mir-2285q, bta-mir-2285r, bta-mir-2285s, bta-mir-2285t, bta-mir-2285b-2, bta-mir-2285v, bta-mir-2284z-2, bta-mir-2285g-2, bta-mir-2285g-3, bta-mir-2285af-1, bta-mir-2285af-2, bta-mir-2285y, bta-mir-2285w, bta-mir-2285x, bta-mir-2285z, bta-mir-2285u, bta-mir-2285aa, bta-mir-2285ab, bta-mir-2284ab, bta-mir-2285ac, bta-mir-2285ad, bta-mir-2284ac, bta-mir-2285ae, bta-mir-1842, bta-mir-2285ag, bta-mir-2285ah, bta-mir-2285ai, bta-mir-2285aj, bta-mir-2285ak, bta-mir-2285al, bta-mir-2285am, bta-mir-2285ar, bta-mir-2285as-1, bta-mir-2285as-2, bta-mir-2285as-3, bta-mir-2285at-1, bta-mir-2285at-2, bta-mir-2285at-3, bta-mir-2285at-4, bta-mir-2285au, bta-mir-2285av, bta-mir-2285aw, bta-mir-2285ax-1, bta-mir-2285ax-2, bta-mir-2285ax-3, bta-mir-2285ay, bta-mir-2285az, bta-mir-2285an, bta-mir-2285ao-1, bta-mir-2285ao-2, bta-mir-2285ap, bta-mir-2285ao-3, bta-mir-2285aq-1, bta-mir-2285aq-2, bta-mir-2285ba-1, bta-mir-2285ba-2, bta-mir-2285bb, bta-mir-2285bc, bta-mir-2285bd, bta-mir-2285be, bta-mir-2285bf-1, bta-mir-2285bf-2, bta-mir-2285bf-3, bta-mir-2285bg, bta-mir-2285bh, bta-mir-2285bi-1, bta-mir-2285bi-2, bta-mir-2285bj-1, bta-mir-2285bj-2, bta-mir-2285bk, bta-mir-2285bl, bta-mir-2285bm, bta-mir-2285bn, bta-mir-2285bo, bta-mir-2285bp, bta-mir-2285bq, bta-mir-2285br, bta-mir-2285bs, bta-mir-2285bt, bta-mir-2285bu-1, bta-mir-2285bu-2, bta-mir-2285bv, bta-mir-2285bw, bta-mir-2285bx, bta-mir-2285by, bta-mir-2285bz, bta-mir-2285ca, bta-mir-2285cb, bta-mir-2285cc, bta-mir-2285cd, bta-mir-2285ce, bta-mir-2285cf, bta-mir-2285cg, bta-mir-148d, bta-mir-2285ch, bta-mir-2285ci, bta-mir-2285cj, bta-mir-2285ck, bta-mir-2285cl, bta-mir-2285cm, bta-mir-2285cn, bta-mir-2285co, bta-mir-2285cp, bta-mir-2285cq, bta-mir-2285cr-1, bta-mir-2285cr-2, bta-mir-2285cs, bta-mir-2285ct, bta-mir-2285cu, bta-mir-2285cv-1, bta-mir-2285cv-2, bta-mir-2285cw-1, bta-mir-2285cw-2, bta-mir-2285cx, bta-mir-2285cy, bta-mir-2285cz, bta-mir-2285da, bta-mir-2285db, bta-mir-2285dc, bta-mir-2285dd, bta-mir-2285de, bta-mir-2285df, bta-mir-2285dg, bta-mir-2285dh, bta-mir-2285di, bta-mir-2285dj, bta-mir-2285dk, bta-mir-2285dl-1, bta-mir-2285dl-2, bta-mir-2285dm
Some specific examples include the role of miR-150 in inhibiting synthesis of the transcription factor c-Myb to help regulate B-cell differentiation [4], and miR-126 targeting of insulin regulatory subunit-1 transcripts to positively control the fate of B-cells [5]. [score:7]
[1 to 20 of 1 sentences]
7
[+] score: 7
Other miRNAs from this paper: hsa-let-7c, hsa-let-7d, hsa-let-7f-1, hsa-let-7f-2, hsa-mir-15a, hsa-mir-17, hsa-mir-20a, hsa-mir-21, hsa-mir-26a-1, hsa-mir-26b, hsa-mir-92a-1, hsa-mir-92a-2, hsa-mir-99a, hsa-mir-148a, hsa-mir-7-1, hsa-mir-7-2, hsa-mir-7-3, hsa-mir-181a-2, hsa-mir-181a-1, hsa-mir-125b-1, hsa-mir-143, hsa-mir-125b-2, hsa-mir-126, hsa-mir-146a, hsa-mir-155, hsa-mir-106b, hsa-mir-99b, hsa-mir-26a-2, hsa-mir-378a, hsa-mir-151a, hsa-mir-450a-1, hsa-mir-452, hsa-mir-450a-2, hsa-mir-92b, hsa-mir-151b, hsa-mir-378d-2, bta-mir-26a-2, bta-let-7f-2, bta-mir-148a, bta-mir-151, bta-mir-16b, bta-mir-20a, bta-mir-21, bta-mir-26b, bta-mir-99a, bta-mir-125b-1, bta-mir-181a-2, bta-mir-92a-2, bta-let-7d, bta-mir-17, bta-mir-450a-2, bta-mir-7-3, bta-let-7f-1, bta-let-7c, bta-mir-125b-2, bta-mir-15a, bta-mir-99b, hsa-mir-450b, bta-mir-106b, bta-mir-143, bta-mir-146a, bta-mir-155, bta-mir-16a, bta-mir-26a-1, bta-mir-378-1, bta-mir-452, bta-mir-92a-1, bta-mir-92b, bta-mir-7-2, bta-mir-7-1, bta-mir-181a-1, bta-mir-2284i, bta-mir-2285a, bta-mir-2284s, bta-mir-2285d, bta-mir-2284l, bta-mir-2284j, bta-mir-2284t, bta-mir-2285b-1, bta-mir-2284d, bta-mir-2284n, bta-mir-2284g, bta-mir-2284p, bta-mir-2284u, bta-mir-2284f, bta-mir-2284a, bta-mir-2284k, bta-mir-2284c, bta-mir-2284v, bta-mir-2285c, bta-mir-2284q, bta-mir-2284m, bta-mir-2284b, bta-mir-2284r, bta-mir-2284h, bta-mir-2284o, bta-mir-2284e, bta-mir-450a-1, bta-mir-378-2, hsa-mir-378b, bta-mir-2284w, bta-mir-2284x, hsa-mir-378c, hsa-mir-378d-1, hsa-mir-378e, hsa-mir-378f, hsa-mir-378g, hsa-mir-378h, hsa-mir-378i, bta-mir-450b, bta-mir-2284y-1, bta-mir-2285e-1, bta-mir-2285e-2, bta-mir-2285f-1, bta-mir-2285f-2, bta-mir-2285g-1, bta-mir-2285h, bta-mir-2285i, bta-mir-2285j-1, bta-mir-2285j-2, bta-mir-2285k-1, bta-mir-2285l, hsa-mir-378j, bta-mir-2285o-1, bta-mir-2285o-2, bta-mir-2285n-1, bta-mir-2285n-2, bta-mir-2285p, bta-mir-2285m-1, bta-mir-2285m-2, bta-mir-2284y-2, bta-mir-378b, bta-mir-2285n-3, bta-mir-2285n-4, bta-mir-2284y-3, bta-mir-2285o-3, bta-mir-2285o-4, bta-mir-2285m-3, bta-mir-378c, bta-mir-2284y-4, bta-mir-2284y-5, bta-mir-2284y-6, bta-mir-2285m-4, bta-mir-2285o-5, bta-mir-2285m-5, bta-mir-2285n-5, bta-mir-2285n-6, bta-mir-2284y-7, bta-mir-2285n-7, bta-mir-2284z-1, bta-mir-2284aa-1, bta-mir-2285k-2, bta-mir-2284z-3, bta-mir-2284aa-2, bta-mir-2284aa-3, bta-mir-2285k-3, bta-mir-2285k-4, bta-mir-2284z-4, bta-mir-2285k-5, bta-mir-2284z-5, bta-mir-2284z-6, bta-mir-2284z-7, bta-mir-2284aa-4, bta-mir-2285q, bta-mir-2285r, bta-mir-2285s, bta-mir-2285t, bta-mir-2285b-2, bta-mir-2285v, bta-mir-2284z-2, bta-mir-2285g-2, bta-mir-2285g-3, bta-mir-2285af-1, bta-mir-2285af-2, bta-mir-2285y, bta-mir-2285w, bta-mir-2285x, bta-mir-2285z, bta-mir-2285u, bta-mir-2285aa, bta-mir-2285ab, bta-mir-2284ab, bta-mir-2285ac, bta-mir-2285ad, bta-mir-2284ac, bta-mir-2285ae, bta-mir-378d, bta-mir-2285ag, bta-mir-2285ah, bta-mir-2285ai, bta-mir-2285aj, bta-mir-2285ak, bta-mir-2285al, bta-mir-2285am, bta-mir-2285ar, bta-mir-2285as-1, bta-mir-2285as-2, bta-mir-2285as-3, bta-mir-2285at-1, bta-mir-2285at-2, bta-mir-2285at-3, bta-mir-2285at-4, bta-mir-2285au, bta-mir-2285av, bta-mir-2285aw, bta-mir-2285ax-1, bta-mir-2285ax-2, bta-mir-2285ax-3, bta-mir-2285ay, bta-mir-2285az, bta-mir-2285an, bta-mir-2285ao-1, bta-mir-2285ao-2, bta-mir-2285ap, bta-mir-2285ao-3, bta-mir-2285aq-1, bta-mir-2285aq-2, bta-mir-2285ba-1, bta-mir-2285ba-2, bta-mir-2285bb, bta-mir-2285bc, bta-mir-2285bd, bta-mir-2285be, bta-mir-2285bf-1, bta-mir-2285bf-2, bta-mir-2285bf-3, bta-mir-2285bg, bta-mir-2285bh, bta-mir-2285bi-1, bta-mir-2285bi-2, bta-mir-2285bj-1, bta-mir-2285bj-2, bta-mir-2285bk, bta-mir-2285bl, bta-mir-2285bm, bta-mir-2285bn, bta-mir-2285bo, bta-mir-2285bp, bta-mir-2285bq, bta-mir-2285br, bta-mir-2285bs, bta-mir-2285bt, bta-mir-2285bu-1, bta-mir-2285bu-2, bta-mir-2285bv, bta-mir-2285bw, bta-mir-2285bx, bta-mir-2285by, bta-mir-2285bz, bta-mir-2285ca, bta-mir-2285cb, bta-mir-2285cc, bta-mir-2285cd, bta-mir-2285ce, bta-mir-2285cf, bta-mir-2285cg, bta-mir-2285ch, bta-mir-2285ci, bta-mir-2285cj, bta-mir-2285ck, bta-mir-2285cl, bta-mir-2285cm, bta-mir-2285cn, bta-mir-2285co, bta-mir-2285cp, bta-mir-2285cq, bta-mir-2285cr-1, bta-mir-2285cr-2, bta-mir-2285cs, bta-mir-2285ct, bta-mir-2285cu, bta-mir-2285cv-1, bta-mir-2285cv-2, bta-mir-2285cw-1, bta-mir-2285cw-2, bta-mir-2285cx, bta-mir-2285cy, bta-mir-2285cz, bta-mir-2285da, bta-mir-2285db, bta-mir-2285dc, bta-mir-2285dd, bta-mir-2285de, bta-mir-2285df, bta-mir-2285dg, bta-mir-2285dh, bta-mir-2285di, bta-mir-2285dj, bta-mir-2285dk, bta-mir-2285dl-1, bta-mir-2285dl-2, bta-mir-2285dm
The most highly expressed microRNA was miR-21 with one-third of all mapped reads, followed by let-7f and miR-126, each with ∼15% of all reads. [score:3]
Processing is specific for the mature miR-126 microRNA, but the star sequence is more abundant than for miR-21. [score:1]
The reads representing the endothelial-specific miR-126 [Fish et al., 2008; Kuhnert et al., 2008; Wang et al., 2008] also indicate the presence of isomiRs, but the distribution of reads between miR-126 and its star sequence, processed from the other arm of the pre-microRNA is less extreme (1,014,272 vs. [score:1]
B: The reads representing miR-126 (>400 occurrences) are depicted as described above for miR-21. [score:1]
The well-characterized endothelial-specific miR-126 was the third most highly expressed microRNA. [score:1]
[1 to 20 of 5 sentences]
8
[+] score: 6
In addition, the expression of three mammary gland tissue enriched miRNAs (bta-miR126-3p, miR-145-5p and miR-199a-5p) was significantly higher in mammary gland tissue than in the three milk fractions (p < 0.05). [score:3]
In mammary gland tissue, highly enriched miR-126-3p regulates lactation and mammary gland development in mouse [49]. [score:3]
[1 to 20 of 2 sentences]
9
[+] score: 6
Recently, in vitro studies reported that certain miRNAs, such as miR-101a [22] and miR-126-3p [23], regulate the proliferation of mammary epithelial cells or, such as miR-206 [24], impact the development of this organ. [score:3]
For example, miR-126-3p was the most frequently detected under both the NGS and qPCR approaches, while the expression of miR-33a-3p was lower with both techniques when compared to the other miRNA selected. [score:2]
Eight miRNAs (miR-15a-5p, miR-17-5p, miR-20a-5p, miR-33a-3p, miR-126-3p, miR-181a-5p, miR-142-5p and miR-223-3p; Supplementary S1 Table) were chosen for further study on the basis of their ranking and their function highlighted in the literature. [score:1]
[1 to 20 of 3 sentences]
10
[+] score: 6
MiRNAs like miR-151-5p and miR-126-5p exhibited similar level of expression as their corresponding 3p arms. [score:3]
A representative miRNA precursor (bta-mir-126) with functional 5p and 3p arms is shown in S3 Fig. 10.1371/journal. [score:1]
A representative miRNA precursor (bta-mir-126) with functional 5p and 3p arms is shown in S3 Fig. 10.1371/journal. [score:1]
Graphic illustration of a representative miRNA precursor (bta-mir-126) with functional 5p and 3p arms. [score:1]
[1 to 20 of 4 sentences]
11
[+] score: 6
Using the Patrocles database, we found polymorphic miRNA target sites for bta-miR-199b, -miR-199a-5p, and -miR-361 in the IL1B gene and for –miR-126 in the CYP11B1 gene. [score:3]
Interestingly, the expression of -miR-199b, -miR-199a-5p and –miR-126 in the bovine mammary gland has already been experimentally confirmed. [score:3]
[1 to 20 of 2 sentences]
12
[+] score: 6
MiR-126-3p is specifically involved in mammary gland development in the mouse as well as in targeting and regulating the progesterone receptor, inhibiting proliferation of mammary epithelial cells in the mouse and secretion of β-casein [8]. [score:6]
[1 to 20 of 1 sentences]
13
[+] score: 5
Other miRNAs from this paper: mmu-let-7g, mmu-let-7i, mmu-mir-23b, mmu-mir-29b-1, mmu-mir-30b, mmu-mir-99a, mmu-mir-126a, mmu-mir-132, mmu-mir-141, mmu-mir-181a-2, mmu-mir-185, mmu-mir-193a, mmu-mir-199a-1, mmu-mir-200b, mmu-mir-34c, mmu-let-7d, mmu-mir-196a-1, mmu-mir-196a-2, mmu-mir-200a, mmu-let-7a-1, mmu-let-7a-2, mmu-let-7b, mmu-let-7c-1, mmu-let-7c-2, mmu-let-7e, mmu-let-7f-1, mmu-let-7f-2, mmu-mir-16-1, mmu-mir-16-2, mmu-mir-20a, mmu-mir-22, mmu-mir-23a, mmu-mir-26a-1, mmu-mir-26b, mmu-mir-34a, mmu-mir-200c, mmu-mir-212, mmu-mir-181a-1, mmu-mir-26a-2, mmu-mir-29b-2, mmu-mir-199a-2, mmu-mir-199b, mmu-mir-378a, mmu-mir-451a, mmu-mir-674, mmu-mir-423, mmu-mir-146b, bta-mir-26a-2, bta-let-7f-2, bta-mir-16b, bta-mir-20a, bta-mir-26b, bta-mir-99a, bta-mir-181a-2, bta-mir-199a-1, bta-mir-30b, bta-mir-193a, bta-let-7d, bta-mir-132, bta-mir-199b, bta-mir-200a, bta-mir-200c, bta-mir-22, bta-mir-23a, bta-mir-29b-2, bta-mir-423, bta-let-7g, bta-mir-200b, bta-let-7a-1, bta-let-7f-1, bta-let-7i, bta-mir-23b, bta-mir-34c, bta-let-7a-2, bta-let-7a-3, bta-let-7b, bta-let-7c, bta-let-7e, bta-mir-34a, bta-mir-141, bta-mir-146b, bta-mir-16a, bta-mir-185, bta-mir-196a-2, bta-mir-196a-1, bta-mir-199a-2, bta-mir-212, bta-mir-26a-1, bta-mir-29b-1, bta-mir-181a-1, bta-mir-2284i, bta-mir-2284s, bta-mir-2284l, bta-mir-2284j, bta-mir-2284t, bta-mir-2284d, bta-mir-2284n, bta-mir-2284g, bta-mir-2284p, bta-mir-2284u, bta-mir-2284f, bta-mir-2284a, bta-mir-2284k, bta-mir-2284c, bta-mir-2284v, bta-mir-2284q, bta-mir-2284m, bta-mir-2284b, bta-mir-2284r, bta-mir-2284h, bta-mir-2284o, bta-mir-2284e, bta-mir-2284w, bta-mir-2284x, bta-mir-2284y-1, mmu-let-7j, bta-mir-2284y-2, bta-mir-2284y-3, bta-mir-2284y-4, bta-mir-2284y-5, bta-mir-2284y-6, bta-mir-2284y-7, bta-mir-2284z-1, bta-mir-2284aa-1, bta-mir-2284z-3, bta-mir-2284aa-2, bta-mir-2284aa-3, bta-mir-2284z-4, bta-mir-2284z-5, bta-mir-2284z-6, bta-mir-2284z-7, bta-mir-2284aa-4, bta-mir-2285t, bta-mir-2284z-2, mmu-let-7k, mmu-mir-126b, bta-mir-2284ab, bta-mir-2284ac
As for the miRNA highly expressed during lactation but not during non-lactating stages, the same types of analysis were performed on the six miRNA identified (miR-126-5p, miR-16-5p, miR-141-3p, miR-200a-3p, miR-200b-3p, miR-200c-3p). [score:3]
Six of them (miR-126-5p, miR-16-5p, and members of the miR-200 family (miR-141-3p, miR-200a-3p, miR-200b-3p, miR-200c-3p)) were not present amongst the 30 highly abundant miRNA in non-lactating miRNomes. [score:1]
Among the 24 common miRNA, seven other miRNA (miR-16-5p, miR-23a-3p, miR-126-5p, miR-126-3p, and three members of the miR-200 family (miR-200a-3p, miR-200b-3p, miR-200c-3p)) were mainly detected in the top 30 of different epithelial tissues, such as kidney, lung or endometrium (Table S4, Figure S2), suggesting that they could be involved in physiological processes linked to epithelial cell functions. [score:1]
[1 to 20 of 3 sentences]
14
[+] score: 5
miR-335 and miR-126 are identified as metastasis suppressors in human breast cancer because their expressions are lost in the majority of primary breast tumors [11]. [score:5]
[1 to 20 of 1 sentences]
15
[+] score: 4
Control animals, however, also displayed similar miR-205 increases (2-fold) and miR-432 decreases (2-fold) at the 6 month time-point but were also accompanied by subtle increases (~1.5 fold) in expression for miR-27a, miR-92b, miR-10b, miR-143 and miR-126-5p (Table 3). [score:3]
Comparing the 0 to the six month time-points within each group revealed similar read count profiles for miR-205, miR-10b, miR-92b, miR-432, miR-27a, miR-127, miR-126 and miR-143. [score:1]
[1 to 20 of 2 sentences]
16
[+] score: 3
Moreover, miR-126-5p, which is endothelial-specific and associated with aerobic exercise [39], did not show any change between cattle groups or time points in this study. [score:1]
Although circulation levels of miR-29b, miR-30a, miR-30d, miR-103, miR-126-5p, miR-144, miR-155, miR-425-5p, miR-489, miR-1249, and miR-2888 were also examined, no significant differences in these miRNAs were observed between the cattle groups at any time points or between the time points in either of the cattle groups. [score:1]
Also present were miR-1777b (6.71%), miR-1777a (4.88%), miR-1246 (4.42%), miR-126-3p (2.44%), miR-2305 (2.07%), miR-1584-5p (1.90%), miR-2413 (1.74%), miR-4286 (1.58%), miR-1224 (1.56%), and miR-451 (1.41%). [score:1]
[1 to 20 of 3 sentences]
17
[+] score: 3
Other miRNAs from this paper: hsa-let-7a-1, hsa-let-7a-2, hsa-let-7a-3, hsa-let-7f-1, hsa-let-7f-2, hsa-mir-15a, hsa-mir-16-1, hsa-mir-21, hsa-mir-23a, hsa-mir-24-1, hsa-mir-24-2, hsa-mir-26a-1, hsa-mir-29a, hsa-mir-30a, hsa-mir-31, hsa-mir-99a, hsa-mir-29b-1, hsa-mir-29b-2, hsa-mir-103a-2, hsa-mir-103a-1, hsa-mir-16-2, hsa-mir-192, hsa-mir-148a, hsa-mir-10b, hsa-mir-181a-2, hsa-mir-181a-1, hsa-mir-215, hsa-mir-223, hsa-mir-224, hsa-mir-200b, hsa-mir-15b, hsa-mir-27b, hsa-mir-125b-1, hsa-mir-141, hsa-mir-143, hsa-mir-152, hsa-mir-125b-2, hsa-mir-126, hsa-mir-146a, hsa-mir-184, hsa-mir-200c, hsa-mir-155, hsa-mir-29c, hsa-mir-200a, hsa-mir-99b, hsa-mir-296, hsa-mir-30e, hsa-mir-26a-2, hsa-mir-378a, hsa-mir-342, hsa-mir-148b, hsa-mir-451a, ssc-mir-125b-2, ssc-mir-148a, ssc-mir-15b, ssc-mir-184, ssc-mir-224, ssc-mir-23a, ssc-mir-24-1, ssc-mir-26a, ssc-mir-29b-1, ssc-let-7f-1, ssc-mir-103-1, ssc-mir-21, ssc-mir-29c, hsa-mir-486-1, hsa-mir-499a, hsa-mir-671, hsa-mir-378d-2, bta-mir-26a-2, bta-mir-29a, bta-let-7f-2, bta-mir-103-1, bta-mir-148a, bta-mir-16b, bta-mir-21, bta-mir-499, bta-mir-99a, bta-mir-125b-1, bta-mir-181a-2, bta-mir-27b, bta-mir-31, bta-mir-15b, bta-mir-215, bta-mir-30e, bta-mir-148b, bta-mir-192, bta-mir-200a, bta-mir-200c, bta-mir-23a, bta-mir-29b-2, bta-mir-29c, bta-mir-10b, bta-mir-24-2, bta-mir-30a, bta-mir-200b, bta-let-7a-1, bta-mir-342, bta-let-7f-1, bta-let-7a-2, bta-let-7a-3, bta-mir-103-2, bta-mir-125b-2, bta-mir-15a, bta-mir-99b, hsa-mir-664a, ssc-mir-99b, hsa-mir-103b-1, hsa-mir-103b-2, ssc-mir-15a, ssc-mir-16-2, ssc-mir-16-1, bta-mir-141, bta-mir-143, bta-mir-146a, bta-mir-152, bta-mir-155, bta-mir-16a, bta-mir-184, bta-mir-24-1, bta-mir-223, bta-mir-224, bta-mir-26a-1, bta-mir-296, bta-mir-29d, bta-mir-378-1, bta-mir-451, bta-mir-486, bta-mir-671, bta-mir-29e, bta-mir-29b-1, bta-mir-181a-1, ssc-mir-181a-1, ssc-mir-215, ssc-mir-30a, bta-mir-2318, bta-mir-2339, bta-mir-2430, bta-mir-664a, bta-mir-378-2, ssc-let-7a-1, ssc-mir-378-1, ssc-mir-29a, ssc-mir-30e, ssc-mir-499, ssc-mir-143, ssc-mir-10b, ssc-mir-486-1, ssc-mir-152, ssc-mir-103-2, ssc-mir-181a-2, ssc-mir-27b, ssc-mir-24-2, ssc-mir-99a, ssc-mir-148b, ssc-mir-664, ssc-mir-192, ssc-mir-342, ssc-mir-125b-1, oar-mir-21, oar-mir-29a, oar-mir-125b, oar-mir-181a-1, hsa-mir-378b, hsa-mir-378c, ssc-mir-296, ssc-mir-155, ssc-mir-146a, bta-mir-148c, ssc-mir-126, ssc-mir-378-2, ssc-mir-451, hsa-mir-378d-1, hsa-mir-378e, hsa-mir-378f, hsa-mir-378g, hsa-mir-378h, hsa-mir-378i, hsa-mir-451b, hsa-mir-499b, ssc-let-7a-2, ssc-mir-486-2, hsa-mir-664b, hsa-mir-378j, ssc-let-7f-2, ssc-mir-29b-2, ssc-mir-31, ssc-mir-671, bta-mir-378b, bta-mir-378c, hsa-mir-486-2, oar-let-7a, oar-let-7f, oar-mir-103, oar-mir-10b, oar-mir-143, oar-mir-148a, oar-mir-152, oar-mir-16b, oar-mir-181a-2, oar-mir-200a, oar-mir-200b, oar-mir-200c, oar-mir-23a, oar-mir-26a, oar-mir-29b-1, oar-mir-30a, oar-mir-99a, bta-mir-664b, chi-let-7a, chi-let-7f, chi-mir-103, chi-mir-10b, chi-mir-125b, chi-mir-126, chi-mir-141, chi-mir-143, chi-mir-146a, chi-mir-148a, chi-mir-148b, chi-mir-155, chi-mir-15a, chi-mir-15b, chi-mir-16a, chi-mir-16b, chi-mir-184, chi-mir-192, chi-mir-200a, chi-mir-200b, chi-mir-200c, chi-mir-215, chi-mir-21, chi-mir-223, chi-mir-224, chi-mir-2318, chi-mir-23a, chi-mir-24, chi-mir-26a, chi-mir-27b, chi-mir-296, chi-mir-29a, chi-mir-29b, chi-mir-29c, chi-mir-30a, chi-mir-30e, chi-mir-342, chi-mir-378, chi-mir-451, chi-mir-499, chi-mir-671, chi-mir-99a, chi-mir-99b, bta-mir-378d, ssc-mir-378b, oar-mir-29b-2, ssc-mir-141, ssc-mir-200b, ssc-mir-223, bta-mir-148d
Comparative analysis of the miRNA repertoire in lactating and non-lactating bovine and mouse mammary glands observed that 6 (miR-126-5p, miR-16-5p, miR-141-3p, miR-200a-3p, miR-200b-3p, miR-200c-3p) out of 24 miRNAs common to both species were highly expressed in lactating than non-lactating mammary glands (Le Guillou et al., 2014). [score:3]
[1 to 20 of 1 sentences]
18
[+] score: 2
The miRNAs of chr9_17896_star, chr19_34912_mature, bta-miR-200b, bta-miR-199a-3p, bta-miR-29c, bta-miR-129-3p, bta-miR-34a, bta-miR-92b, bta-miR-126-5p, bta-miR-2888, bta-miR-214, bta-miR-424-5p, bta-miR-382 and bta-miR-330 were examined, and the mRNAs of LALBA, RHOF, MFGE8, TMEM120B and GPAM were examined. [score:1]
Notably, several of the DE miRNAs (miR-100, miR-214, miR-182, miR-367b, miR-382, miR-330, miR-92b, miR-126-5p, miR-202, miR-369-5p and miR-31) have previously been reported to be involved in cell biology or metabolism 46– 56. [score:1]
[1 to 20 of 2 sentences]
19
[+] score: 1
Other miRNAs from this paper: ssc-mir-122, ssc-mir-125b-2, ssc-mir-181b-2, ssc-mir-20a, ssc-mir-23a, ssc-mir-26a, ssc-mir-29b-1, ssc-mir-181c, ssc-mir-214, ssc-let-7c, ssc-let-7f-1, ssc-let-7i, ssc-mir-103-1, ssc-mir-107, ssc-mir-21, ssc-mir-29c, ssc-mir-30c-2, bta-mir-26a-2, bta-mir-29a, bta-let-7f-2, bta-mir-103-1, bta-mir-20a, bta-mir-21, bta-mir-26b, bta-mir-30d, bta-mir-499, bta-mir-99a, bta-mir-125b-1, bta-mir-181a-2, bta-mir-199a-1, bta-mir-30b, bta-mir-107, bta-mir-10a, bta-mir-127, bta-mir-142, bta-mir-181b-2, bta-mir-30e, bta-mir-92a-2, bta-let-7d, bta-mir-132, bta-mir-138-2, bta-mir-17, bta-mir-181c, bta-mir-192, bta-mir-199b, bta-mir-200a, bta-mir-200c, bta-mir-214, bta-mir-23a, bta-mir-29b-2, bta-mir-29c, bta-mir-455, bta-let-7g, bta-mir-10b, bta-mir-30a, bta-mir-200b, bta-let-7a-1, bta-let-7f-1, bta-mir-122, bta-mir-30c, bta-let-7i, bta-mir-25, bta-let-7a-2, bta-let-7a-3, bta-let-7b, bta-let-7c, bta-let-7e, bta-mir-103-2, bta-mir-125b-2, bta-mir-99b, ssc-mir-99b, ssc-mir-17, ssc-mir-30b, ssc-mir-199b, bta-mir-1-2, bta-mir-1-1, bta-mir-129-1, bta-mir-129-2, bta-mir-133a-2, bta-mir-133a-1, bta-mir-133b, bta-mir-135b, bta-mir-138-1, bta-mir-143, bta-mir-144, bta-mir-146b, bta-mir-146a, bta-mir-181d, bta-mir-190a, bta-mir-199a-2, bta-mir-202, bta-mir-206, bta-mir-211, bta-mir-212, bta-mir-223, bta-mir-26a-1, bta-mir-29d, bta-mir-30f, bta-mir-338, bta-mir-33a, bta-mir-33b, bta-mir-375, bta-mir-429, bta-mir-451, bta-mir-92a-1, bta-mir-92b, bta-mir-29e, bta-mir-29b-1, bta-mir-181a-1, bta-mir-181b-1, ssc-mir-133a-1, ssc-mir-1, ssc-mir-146b, ssc-mir-181a-1, ssc-mir-30a, bta-mir-199c, ssc-mir-206, ssc-let-7a-1, ssc-let-7e, ssc-let-7g, ssc-mir-133b, ssc-mir-29a, ssc-mir-30d, ssc-mir-30e, ssc-mir-199a-2, ssc-mir-499, ssc-mir-143, ssc-mir-10a, ssc-mir-10b, ssc-mir-103-2, ssc-mir-181a-2, ssc-mir-181b-1, ssc-mir-181d, ssc-mir-99a, ssc-mir-92a-2, ssc-mir-92a-1, ssc-mir-92b, ssc-mir-192, ssc-mir-142, ssc-mir-127, ssc-mir-202, ssc-mir-129a, ssc-mir-455, ssc-mir-125b-1, ssc-mir-338, ssc-mir-133a-2, ssc-mir-146a, bta-mir-26c, ssc-mir-30c-1, ssc-mir-126, ssc-mir-199a-1, ssc-mir-451, ssc-let-7a-2, ssc-mir-129b, ssc-mir-429, ssc-let-7d, ssc-let-7f-2, ssc-mir-29b-2, ssc-mir-132, ssc-mir-138, ssc-mir-144, ssc-mir-190a, ssc-mir-212, bta-mir-133c, ssc-mir-26b, ssc-mir-200b, ssc-mir-223, ssc-mir-375, ssc-mir-33b
Seven miRNAs (miR-126-3p, miR-101a, miR-451, miR-22a, miR-146, miR-142a-5p, and miR-192) were found to have optimal stability and should be individually prioritized according to the stage and tissue of interest. [score:1]
[1 to 20 of 1 sentences]
20
[+] score: 1
Other miRNAs from this paper: hsa-mir-17, hsa-mir-19a, hsa-mir-29a, hsa-mir-29b-1, hsa-mir-29b-2, hsa-mir-198, hsa-mir-208a, hsa-mir-10a, hsa-mir-223, hsa-mir-122, hsa-mir-124-1, hsa-mir-124-2, hsa-mir-124-3, hsa-mir-125b-1, hsa-mir-9-1, hsa-mir-9-2, hsa-mir-9-3, hsa-mir-125b-2, hsa-mir-126, hsa-mir-146a, hsa-mir-150, hsa-mir-155, hsa-mir-29c, hsa-mir-99b, hsa-mir-296, hsa-mir-196b, hsa-mir-515-1, hsa-mir-515-2, hsa-mir-548a-1, hsa-mir-548b, hsa-mir-548a-2, hsa-mir-550a-1, hsa-mir-550a-2, hsa-mir-548a-3, hsa-mir-548c, hsa-mir-640, hsa-mir-548d-1, hsa-mir-548d-2, hsa-mir-550a-3, bta-mir-29a, bta-mir-125b-1, bta-mir-10a, bta-mir-124a-1, bta-mir-17, bta-mir-29b-2, bta-mir-29c, bta-mir-150, bta-mir-122, bta-mir-125b-2, bta-mir-19a, bta-mir-99b, hsa-mir-208b, hsa-mir-548e, hsa-mir-548j, hsa-mir-548k, hsa-mir-548l, hsa-mir-548f-1, hsa-mir-548f-2, hsa-mir-548f-3, hsa-mir-548f-4, hsa-mir-548f-5, hsa-mir-548g, hsa-mir-548n, hsa-mir-548m, hsa-mir-548o, hsa-mir-548h-1, hsa-mir-548h-2, hsa-mir-548h-3, hsa-mir-548h-4, hsa-mir-548p, hsa-mir-548i-1, hsa-mir-548i-2, hsa-mir-548i-3, hsa-mir-548i-4, bta-mir-124a-2, bta-mir-124b, bta-mir-146a, bta-mir-155, bta-mir-196b, bta-mir-208a, bta-mir-208b, bta-mir-223, bta-mir-296, bta-mir-29d, bta-mir-9-1, bta-mir-9-2, bta-mir-29e, bta-mir-29b-1, hsa-mir-548q, bta-mir-2284i, bta-mir-2285a, bta-mir-2284s, bta-mir-2285d, bta-mir-2284l, bta-mir-2284j, bta-mir-2284t, bta-mir-2285b-1, bta-mir-2284d, bta-mir-2284n, bta-mir-2284g, bta-mir-2284p, bta-mir-2284u, bta-mir-2284f, bta-mir-2284a, bta-mir-2284k, bta-mir-2284c, bta-mir-2284v, bta-mir-2285c, bta-mir-2284q, bta-mir-2284m, bta-mir-2284b, bta-mir-2284r, bta-mir-2284h, bta-mir-2284o, bta-mir-2284e, hsa-mir-548s, hsa-mir-548t, hsa-mir-548u, hsa-mir-548v, hsa-mir-548w, hsa-mir-548x, bta-mir-2284w, bta-mir-2284x, hsa-mir-548y, hsa-mir-550b-1, hsa-mir-550b-2, hsa-mir-548z, hsa-mir-548aa-1, hsa-mir-548aa-2, hsa-mir-548o-2, hsa-mir-548h-5, hsa-mir-548ab, hsa-mir-548ac, hsa-mir-548ad, hsa-mir-548ae-1, hsa-mir-548ae-2, hsa-mir-548ag-1, hsa-mir-548ag-2, hsa-mir-548ah, hsa-mir-548ai, hsa-mir-548aj-1, hsa-mir-548aj-2, hsa-mir-548x-2, hsa-mir-548ak, hsa-mir-548al, hsa-mir-548am, hsa-mir-548an, hsa-mir-548ao, hsa-mir-548ap, hsa-mir-548aq, hsa-mir-548ar, hsa-mir-548as, hsa-mir-548at, hsa-mir-548au, hsa-mir-548av, hsa-mir-548aw, hsa-mir-548ax, bta-mir-2284y-1, bta-mir-2285e-1, bta-mir-2285e-2, bta-mir-2285f-1, bta-mir-2285f-2, bta-mir-2285g-1, bta-mir-2285h, bta-mir-2285i, bta-mir-2285j-1, bta-mir-2285j-2, bta-mir-2285k-1, bta-mir-2285l, hsa-mir-548ay, hsa-mir-548az, bta-mir-2285o-1, bta-mir-2285o-2, bta-mir-2285n-1, bta-mir-2285n-2, bta-mir-2285p, bta-mir-2285m-1, bta-mir-2285m-2, bta-mir-2284y-2, bta-mir-2285n-3, bta-mir-2285n-4, bta-mir-2284y-3, bta-mir-2285o-3, bta-mir-2285o-4, bta-mir-2285m-3, bta-mir-2284y-4, bta-mir-2284y-5, bta-mir-2284y-6, bta-mir-2285m-4, bta-mir-2285o-5, bta-mir-2285m-5, bta-mir-2285n-5, bta-mir-2285n-6, bta-mir-2284y-7, bta-mir-2285n-7, bta-mir-2284z-1, bta-mir-2284aa-1, bta-mir-2285k-2, bta-mir-2284z-3, bta-mir-2284aa-2, bta-mir-2284aa-3, bta-mir-2285k-3, bta-mir-2285k-4, bta-mir-2284z-4, bta-mir-2285k-5, bta-mir-2284z-5, bta-mir-2284z-6, bta-mir-2284z-7, bta-mir-2284aa-4, bta-mir-2285q, bta-mir-2285r, bta-mir-2285s, bta-mir-2285t, bta-mir-2285b-2, bta-mir-2285v, bta-mir-2284z-2, bta-mir-2285g-2, bta-mir-2285g-3, bta-mir-2285af-1, bta-mir-2285af-2, bta-mir-2285y, bta-mir-2285w, bta-mir-2285x, bta-mir-2285z, bta-mir-2285u, bta-mir-2285aa, bta-mir-2285ab, bta-mir-2284ab, bta-mir-2285ac, bta-mir-2285ad, bta-mir-2284ac, bta-mir-2285ae, hsa-mir-548ba, hsa-mir-548bb, hsa-mir-548bc, bta-mir-2285ag, bta-mir-2285ah, bta-mir-2285ai, bta-mir-2285aj, bta-mir-2285ak, bta-mir-2285al, bta-mir-2285am, bta-mir-2285ar, bta-mir-2285as-1, bta-mir-2285as-2, bta-mir-2285as-3, bta-mir-2285at-1, bta-mir-2285at-2, bta-mir-2285at-3, bta-mir-2285at-4, bta-mir-2285au, bta-mir-2285av, bta-mir-2285aw, bta-mir-2285ax-1, bta-mir-2285ax-2, bta-mir-2285ax-3, bta-mir-2285ay, bta-mir-2285az, bta-mir-2285an, bta-mir-2285ao-1, bta-mir-2285ao-2, bta-mir-2285ap, bta-mir-2285ao-3, bta-mir-2285aq-1, bta-mir-2285aq-2, bta-mir-2285ba-1, bta-mir-2285ba-2, bta-mir-2285bb, bta-mir-2285bc, bta-mir-2285bd, bta-mir-2285be, bta-mir-2285bf-1, bta-mir-2285bf-2, bta-mir-2285bf-3, bta-mir-2285bg, bta-mir-2285bh, bta-mir-2285bi-1, bta-mir-2285bi-2, bta-mir-2285bj-1, bta-mir-2285bj-2, bta-mir-2285bk, bta-mir-2285bl, bta-mir-2285bm, bta-mir-2285bn, bta-mir-2285bo, bta-mir-2285bp, bta-mir-2285bq, bta-mir-2285br, bta-mir-2285bs, bta-mir-2285bt, bta-mir-2285bu-1, bta-mir-2285bu-2, bta-mir-2285bv, bta-mir-2285bw, bta-mir-2285bx, bta-mir-2285by, bta-mir-2285bz, bta-mir-2285ca, bta-mir-2285cb, bta-mir-2285cc, bta-mir-2285cd, bta-mir-2285ce, bta-mir-2285cf, bta-mir-2285cg, bta-mir-2285ch, bta-mir-2285ci, bta-mir-2285cj, bta-mir-2285ck, bta-mir-2285cl, bta-mir-2285cm, bta-mir-2285cn, bta-mir-2285co, bta-mir-2285cp, bta-mir-2285cq, bta-mir-2285cr-1, bta-mir-2285cr-2, bta-mir-2285cs, bta-mir-2285ct, bta-mir-2285cu, bta-mir-2285cv-1, bta-mir-2285cv-2, bta-mir-2285cw-1, bta-mir-2285cw-2, bta-mir-2285cx, bta-mir-2285cy, bta-mir-2285cz, bta-mir-2285da, bta-mir-2285db, bta-mir-2285dc, bta-mir-2285dd, bta-mir-2285de, bta-mir-2285df, bta-mir-2285dg, bta-mir-2285dh, bta-mir-2285di, bta-mir-2285dj, bta-mir-2285dk, bta-mir-2285dl-1, bta-mir-2285dl-2, bta-mir-2285dm
Hematopoietic stem cell differentiation into myeloid and lymphoid lineages, for example, has been shown to be under the influence of several miRNAs, including miR-125b, miR-126, and miR-196b (4, 18). [score:1]
[1 to 20 of 1 sentences]
21
[+] score: 1
Other miRNAs from this paper: bta-mir-29a, bta-let-7f-2, bta-mir-103-1, bta-mir-151, bta-mir-30d, bta-mir-320a-2, bta-mir-181a-2, bta-mir-27b, bta-mir-30b, bta-mir-31, bta-mir-34b, bta-mir-107, bta-mir-15b, bta-mir-181b-2, bta-mir-30e, bta-let-7d, bta-mir-124a-1, bta-mir-138-2, bta-mir-181c, bta-mir-214, bta-mir-455, bta-mir-93, bta-let-7g, bta-mir-10b, bta-mir-30a, bta-let-7a-1, bta-mir-487b, bta-let-7f-1, bta-mir-122, bta-mir-30c, bta-let-7i, bta-mir-25, bta-mir-34c, bta-let-7a-2, bta-let-7a-3, bta-let-7b, bta-let-7c, bta-let-7e, bta-mir-103-2, bta-mir-15a, bta-mir-34a, bta-mir-1-2, bta-mir-1-1, bta-mir-105b, bta-mir-124a-2, bta-mir-124b, bta-mir-133a-2, bta-mir-133a-1, bta-mir-133b, bta-mir-138-1, bta-mir-152, bta-mir-181d, bta-mir-196a-2, bta-mir-196a-1, bta-mir-206, bta-mir-30f, bta-mir-409a, bta-mir-432, bta-mir-486, bta-mir-495, bta-mir-543, bta-mir-9-1, bta-mir-9-2, bta-mir-1185, bta-mir-1271, bta-mir-181a-1, bta-mir-181b-1, bta-mir-2284i, bta-mir-2284s, bta-mir-2284l, bta-mir-2284j, bta-mir-2284t, bta-mir-2284d, bta-mir-2284n, bta-mir-2284g, bta-mir-2284p, bta-mir-2284u, bta-mir-2363-1, bta-mir-2363-2, bta-mir-2284f, bta-mir-2284a, bta-mir-2284k, bta-mir-2284c, bta-mir-2384, bta-mir-2284v, bta-mir-2284q, bta-mir-2404-1, bta-mir-2284m, bta-mir-2284b, bta-mir-320b, bta-mir-2424, bta-mir-2284r, bta-mir-2284h, bta-mir-2404-2, bta-mir-2284o, bta-mir-2284e, bta-mir-320a-1, bta-mir-424, bta-mir-2284w, bta-mir-2284x, bta-mir-409b, bta-mir-2284y-1, bta-mir-2284y-2, bta-mir-2284y-3, bta-mir-2284y-4, bta-mir-2284y-5, bta-mir-2284y-6, bta-mir-2284y-7, bta-mir-2284z-1, bta-mir-2284aa-1, bta-mir-2284z-3, bta-mir-2284aa-2, bta-mir-2284aa-3, bta-mir-2284z-4, bta-mir-2284z-5, bta-mir-2284z-6, bta-mir-2284z-7, bta-mir-2284aa-4, bta-mir-2284z-2, bta-mir-133c, bta-mir-2284ab, bta-mir-2284ac
In two cases (bta-mir-126 and bta-mir-424), we discovered that miRNA* were more abundant than corresponding miRNA as evidenced by higher counts of sequence reads originating from the miRNA* arms of the miRNA precursor sequences. [score:1]
[1 to 20 of 1 sentences]
22
[+] score: 1
Other miRNAs from this paper: hsa-let-7a-1, hsa-let-7a-2, hsa-let-7a-3, hsa-mir-18a, hsa-mir-21, hsa-mir-23a, hsa-mir-26a-1, hsa-mir-30a, hsa-mir-99a, hsa-mir-103a-2, hsa-mir-103a-1, mmu-mir-1a-1, mmu-mir-23b, mmu-mir-30a, mmu-mir-99a, mmu-mir-126a, mmu-mir-9-2, mmu-mir-133a-1, mmu-mir-138-2, hsa-mir-192, mmu-mir-204, mmu-mir-122, hsa-mir-204, hsa-mir-1-2, hsa-mir-23b, hsa-mir-122, hsa-mir-133a-1, hsa-mir-133a-2, hsa-mir-138-2, hsa-mir-9-1, hsa-mir-9-2, hsa-mir-9-3, hsa-mir-126, hsa-mir-138-1, mmu-mir-192, mmu-let-7a-1, mmu-let-7a-2, mmu-mir-18a, mmu-mir-21a, mmu-mir-23a, mmu-mir-26a-1, mmu-mir-103-1, mmu-mir-103-2, hsa-mir-1-1, mmu-mir-1a-2, mmu-mir-26a-2, mmu-mir-9-1, mmu-mir-9-3, mmu-mir-138-1, hsa-mir-26a-2, hsa-mir-376c, hsa-mir-381, mmu-mir-381, mmu-mir-133a-2, rno-let-7a-1, rno-let-7a-2, rno-mir-9a-1, rno-mir-9a-3, rno-mir-9a-2, rno-mir-18a, rno-mir-21, rno-mir-23a, rno-mir-23b, rno-mir-26a, rno-mir-30a, rno-mir-99a, rno-mir-103-2, rno-mir-103-1, rno-mir-122, rno-mir-126a, rno-mir-133a, rno-mir-138-2, rno-mir-138-1, rno-mir-192, rno-mir-204, mmu-mir-411, hsa-mir-451a, mmu-mir-451a, rno-mir-451, hsa-mir-193b, rno-mir-1, mmu-mir-376c, rno-mir-376c, rno-mir-381, hsa-mir-574, hsa-mir-652, hsa-mir-411, bta-mir-26a-2, bta-mir-103-1, bta-mir-16b, bta-mir-18a, bta-mir-21, bta-mir-99a, mmu-mir-652, bta-mir-138-2, bta-mir-192, bta-mir-23a, bta-mir-30a, bta-let-7a-1, bta-mir-122, bta-mir-23b, bta-let-7a-2, bta-let-7a-3, bta-mir-103-2, bta-mir-204, mmu-mir-193b, mmu-mir-574, rno-mir-411, rno-mir-652, mmu-mir-1b, hsa-mir-103b-1, hsa-mir-103b-2, bta-mir-1-2, bta-mir-1-1, bta-mir-133a-2, bta-mir-133a-1, bta-mir-138-1, bta-mir-193b, bta-mir-26a-1, bta-mir-381, bta-mir-411a, bta-mir-451, bta-mir-9-1, bta-mir-9-2, bta-mir-376c, bta-mir-1388, rno-mir-9b-3, rno-mir-9b-1, rno-mir-126b, rno-mir-9b-2, hsa-mir-451b, bta-mir-574, bta-mir-652, mmu-mir-21b, mmu-mir-21c, mmu-mir-451b, bta-mir-411b, bta-mir-411c, mmu-mir-126b, rno-mir-193b, mmu-mir-9b-2, mmu-mir-9b-1, mmu-mir-9b-3
For example, the stem-loop sequence of bta-miR-126 was perfectly matched to those from human, mouse and rat; however, in cattle and mouse, both strands were observed as mature miRNAs, while in human and rat, one strand generates miRNA and the other strand generates miRNA*. [score:1]
[1 to 20 of 1 sentences]