sort by

11 publications mentioning mdm-MIR159b

Open access articles that are associated with the species Malus domestica and mention the gene name MIR159b. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 63
Other miRNAs from this paper: mdm-MIR482a, mdm-MIR156a, mdm-MIR156b, mdm-MIR156c, mdm-MIR156d, mdm-MIR156e, mdm-MIR156f, mdm-MIR156g, mdm-MIR156h, mdm-MIR156i, mdm-MIR156j, mdm-MIR156k, mdm-MIR156l, mdm-MIR156m, mdm-MIR156n, mdm-MIR156o, mdm-MIR156p, mdm-MIR156q, mdm-MIR156r, mdm-MIR156s, mdm-MIR156t, mdm-MIR156u, mdm-MIR156v, mdm-MIR156w, mdm-MIR156x, mdm-MIR156y, mdm-MIR156z, mdm-MIR156aa, mdm-MIR156ab, mdm-MIR156ac, mdm-MIR156ad, mdm-MIR156ae, mdm-MIR159a, mdm-MIR160a, mdm-MIR160b, mdm-MIR160c, mdm-MIR160d, mdm-MIR160e, mdm-MIR164a, mdm-MIR164b, mdm-MIR164c, mdm-MIR164d, mdm-MIR164e, mdm-MIR164f, mdm-MIR166a, mdm-MIR166b, mdm-MIR166c, mdm-MIR166d, mdm-MIR166e, mdm-MIR166f, mdm-MIR166g, mdm-MIR166h, mdm-MIR166i, mdm-MIR167a, mdm-MIR167b, mdm-MIR167c, mdm-MIR167d, mdm-MIR167e, mdm-MIR167f, mdm-MIR167g, mdm-MIR167h, mdm-MIR167i, mdm-MIR167j, mdm-MIR168a, mdm-MIR168b, mdm-MIR169a, mdm-MIR169b, mdm-MIR169c, mdm-MIR169d, mdm-MIR171a, mdm-MIR171b, mdm-MIR171c, mdm-MIR171d, mdm-MIR171e, mdm-MIR171f, mdm-MIR171g, mdm-MIR171h, mdm-MIR171i, mdm-MIR171j, mdm-MIR171k, mdm-MIR171l, mdm-MIR171m, mdm-MIR171n, mdm-MIR172a, mdm-MIR172b, mdm-MIR172c, mdm-MIR172d, mdm-MIR172e, mdm-MIR172f, mdm-MIR172g, mdm-MIR172h, mdm-MIR172i, mdm-MIR172j, mdm-MIR172k, mdm-MIR172l, mdm-MIR172m, mdm-MIR172n, mdm-MIR172o, mdm-MIR393a, mdm-MIR393b, mdm-MIR393c, mdm-MIR395a, mdm-MIR395b, mdm-MIR395c, mdm-MIR395d, mdm-MIR395e, mdm-MIR395f, mdm-MIR395g, mdm-MIR395h, mdm-MIR395i, mdm-MIR396a, mdm-MIR396b, mdm-MIR396c, mdm-MIR396d, mdm-MIR396e, mdm-MIR396f, mdm-MIR396g, mdm-MIR397a, mdm-MIR397b, mdm-MIR399a, mdm-MIR399b, mdm-MIR399c, mdm-MIR399d, mdm-MIR399e, mdm-MIR399f, mdm-MIR399g, mdm-MIR399h, mdm-MIR399i, mdm-MIR399j, mdm-MIR391, mdm-MIR482b, mdm-MIR482c, mdm-MIR535a, mdm-MIR535b, mdm-MIR535c, mdm-MIR535d, mdm-MIR827, mdm-MIR828a, mdm-MIR828b, mdm-MIR482d, mdm-MIR7123a, mdm-MIR7123b, mdm-MIR5225c, mdm-MIR159c, mdm-MIR7124a, mdm-MIR7124b, mdm-MIR5225a, mdm-MIR5225b, mdm-MIR7125, mdm-MIR7126, mdm-MIR393d, mdm-MIR393e, mdm-MIR393f, mdm-MIR171o, mdm-MIR169e, mdm-MIR169f, mdm-MIR7128, mdm-MIR858, mdm-MIR1511, mdm-MIR159d, mdm-MIR159e, mdm-MIR159f, mdm-MIR166j, mdm-MIR399k, mdm-MIR395j, mdm-MIR169g, mdm-MIR169h, mdm-MIR169i, mdm-MIR169j, mdm-MIR171p, mdm-MIR393g, mdm-MIR393h, mdm-MIR395k, mdm-MIR171q, mdm-MIR169k, mdm-MIR169l, mdm-MIR169m, mdm-MIR169n, mdm-MIR172p, mdm-MIR395l, mdm-MIR169o
The expression of miRNA159 in both YF and CF trees showed little response to the during the first 6 days, however, on the 8th day, the miRNA159 was upregulated in CF trees but downregulated in YF trees. [score:9]
The high levels of expression of miRNA167 and miRNA396, and the low expression of miRNA159, in YF trees appears to have inhibited cell division and reduced internode length. [score:7]
miRNA159 potentially deregulates its target genes, MYB33 and MYB65, in vegetative tissues, and inhibit growth by reducing cell proliferation (Alonso-Peral et al., 2010). [score:6]
Thus, GA maybe regulate the expression of the target of miRNA159 to produce the miRNA159 phenotype. [score:6]
The expression of miRNA159, miRNA167, and miRNA396 in YF and CF shoot tips exhibited their highest level of expression during the period of slow shoot growth. [score:5]
The potential targets of miR167, miR160, and miR159 play a role in auxin response and the auxin signaling pathway may also participate in SAM development. [score:4]
miRNA159 and its targets have also been reported to be involved in GA -mediated flowering (Gocal et al., 2001; Achard et al., 2004). [score:3]
The MicroRNA159-Regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. [score:3]
The potential targets of miR159, miR166, miR167, miR171, miR172, miR393, miR858, and miR828 are involved in cell growth. [score:3]
The expression of miRNA159 was significantly higher in CF shoot tips than in YF shoot tips. [score:3]
CF are shown in Figure 8. The expression of miRNA159 in YF was significantly lower at 65, 85, and 125 DABB than it was in CF. [score:3]
The potential targets of miR166, miR159, and miR156 are involved in meristem phase transition. [score:3]
The potential targets of miR159 are involved in the gibberellic acid mediated signaling pathway and gibberellin biosynthetic process. [score:3]
The expression of miRNA159 in YF shoot tips exhibited little response to the application of GA during the first 6 days after spraying GA. [score:3]
The miRNA159 loss of function mutant, mir159ab, has an enlarged shoot apical meristem and smaller lateral organs (Alonso-Peral et al., 2010). [score:1]
Interestingly, miR159a and miR159b also remained unchanged after the application of GA in wild-type Arabidopsis (Alonso-Peral et al., 2010). [score:1]
[1 to 20 of 16 sentences]
2
[+] score: 58
Other miRNAs from this paper: mdm-MIR156a, mdm-MIR156b, mdm-MIR156c, mdm-MIR156d, mdm-MIR156e, mdm-MIR156f, mdm-MIR156g, mdm-MIR156h, mdm-MIR156i, mdm-MIR156j, mdm-MIR156k, mdm-MIR156l, mdm-MIR156m, mdm-MIR156n, mdm-MIR156o, mdm-MIR156p, mdm-MIR156q, mdm-MIR156r, mdm-MIR156s, mdm-MIR156t, mdm-MIR156u, mdm-MIR156v, mdm-MIR156w, mdm-MIR156x, mdm-MIR156y, mdm-MIR156z, mdm-MIR156aa, mdm-MIR156ab, mdm-MIR156ac, mdm-MIR156ad, mdm-MIR156ae, mdm-MIR159a, mdm-MIR162a, mdm-MIR162b, mdm-MIR164a, mdm-MIR164b, mdm-MIR164c, mdm-MIR164d, mdm-MIR164e, mdm-MIR164f, mdm-MIR167a, mdm-MIR167b, mdm-MIR167c, mdm-MIR167d, mdm-MIR167e, mdm-MIR167f, mdm-MIR167g, mdm-MIR167h, mdm-MIR167i, mdm-MIR167j, mdm-MIR168a, mdm-MIR168b, mdm-MIR172a, mdm-MIR172b, mdm-MIR172c, mdm-MIR172d, mdm-MIR172e, mdm-MIR172f, mdm-MIR172g, mdm-MIR172h, mdm-MIR172i, mdm-MIR172j, mdm-MIR172k, mdm-MIR172l, mdm-MIR172m, mdm-MIR172n, mdm-MIR172o, mdm-MIR319a, mdm-MIR319b, mdm-MIR390a, mdm-MIR390b, mdm-MIR390c, mdm-MIR390d, mdm-MIR390e, mdm-MIR390f, mdm-MIR396a, mdm-MIR396b, mdm-MIR396c, mdm-MIR396d, mdm-MIR396e, mdm-MIR396f, mdm-MIR396g, mdm-MIR399a, mdm-MIR399b, mdm-MIR399c, mdm-MIR399d, mdm-MIR399e, mdm-MIR399f, mdm-MIR399g, mdm-MIR399h, mdm-MIR399i, mdm-MIR399j, mdm-MIR2111a, mdm-MIR2111b, mdm-MIR3627a, mdm-MIR3627b, mdm-MIR3627c, mdm-MIR535a, mdm-MIR535b, mdm-MIR535c, mdm-MIR535d, mdm-MIR828a, mdm-MIR828b, mdm-MIR159c, mdm-MIR319c, mdm-MIR858, mdm-MIR3627d, mdm-MIR159d, mdm-MIR159e, mdm-MIR159f, mdm-MIR399k, mdm-MIR319d, mdm-MIR319e, mdm-MIR319f, mdm-MIR319g, mdm-MIR319h, mdm-MIR172p
To address the possibility that some MYB gene targets were missed during degradome analysis, possibly due to inactive or low levels of target gene expression in the plant tissues analyzed, we performed target prediction analysis in over 400 putative apple MYBs and identified an additional 8, 15 and 42 MYB genes with a cleavage-favorable alignment score (≤5) for miR159, miR828 and miR858, respectively. [score:9]
The miR159 target site was found to locate in the sequence-divergent region, while the miR858 and miR828 target sites both mapped to a 55-nucleotide region in the conserved coding region upstream of the divergent region, and the two sites were separated by a 12-nucleotide fragment with the position of the miR858 target site at the 5' end and that of miR828 at the 3' end (Figure 3b). [score:7]
We also found that miR858 shared 11 targets with miR828 and two with miR159 (Figure 3a; Table S7 in Additional file 1), but no common target was identified for miR828 and miR159. [score:5]
All the apple MYB targets for miR828, miR858, and miR159 were predicted by Targetfinder 1.6 with the alignment score no more than 5. Amino acid sequences of 126 R2R3 and 5 R1R2R3 MYB factors in Arabidopsis were retrieved from TAIR [82]and the phylogenetic tree was inferred using the neighbor-joining method and 1,000 bootstraps with putative full-length sequences using CLUSTAL X2 [81]. [score:5]
Consistent with this prediction, miR828 and miR858 target sites, which overlap the conserved R3 region, are found in more MYBs than the miR159 target site located in the divergent region (Figure 3a). [score:5]
Importantly, we found that miR159, miR828 and miR858 can collectively target up to 81 MYB genes potentially involved in diverse aspects of plant growth and development. [score:4]
Six of the nine miR159 -targeted MYBs were placed into MYB subgroup 18 involved in anther and pollen development, while the remaining three were close to subgroup 25, which is associated with embryogenesis in Arabidopsis (Figure 3d). [score:4]
Intriguingly, miR858 was found to co-target 11 MYBs with miR828 and two MYBs with miR159 (Figure 3a), raising the question of whether the convergence of two miRNAs upon the same MYB genes is an evolutionary coincidence or conveys some biological significance. [score:3]
In Arabidopsis, miR159, miR828 and miR858 were either predicted or confirmed to target at least 13 MYB genes [56, 57]. [score:3]
Table S7: MYB genes targeted by miR828, mi858, and miR159. [score:3]
Hence, miR159 may regulate male organ and embryo development and growth in apple. [score:3]
Thus, the roles of miR858 -mediated regulation of MYBs in apple are predicted to be much broader than those for either miR828 or miR159. [score:2]
Figure 3Complex MYB regulatory network mediated by miR159, miR828, and miR858. [score:2]
Thus, a total of nine MYBs for miR159, 19 for miR828 and 66 for miR858 were found, bringing the total number of MYBs potentially regulated by these miRNAs to 81 (Figure 3a; Table S7 in Additional file 1). [score:2]
The highest read abundance (166,000 RPM) was detected for miR156 and was 5 to 16 times more than other relatively abundant miRNA families, including miR165/166, miR167, miR396, and miR159, whose total abundance ranged from 10,000 to 30,000 RPM (Figure 1a; Table S3 in Additional file 1). [score:1]
[1 to 20 of 15 sentences]
3
[+] score: 28
Other miRNAs from this paper: mdm-MIR156a, mdm-MIR156b, mdm-MIR156c, mdm-MIR156d, mdm-MIR156e, mdm-MIR156f, mdm-MIR156g, mdm-MIR156h, mdm-MIR156i, mdm-MIR156j, mdm-MIR156k, mdm-MIR156l, mdm-MIR156m, mdm-MIR156n, mdm-MIR156o, mdm-MIR156p, mdm-MIR156q, mdm-MIR156r, mdm-MIR156s, mdm-MIR156t, mdm-MIR156u, mdm-MIR156v, mdm-MIR156w, mdm-MIR156x, mdm-MIR156y, mdm-MIR156z, mdm-MIR156aa, mdm-MIR156ab, mdm-MIR156ac, mdm-MIR156ad, mdm-MIR156ae, mdm-MIR159a, mdm-MIR160a, mdm-MIR160b, mdm-MIR160c, mdm-MIR160d, mdm-MIR160e, mdm-MIR162a, mdm-MIR162b, mdm-MIR164a, mdm-MIR164b, mdm-MIR164c, mdm-MIR164d, mdm-MIR164e, mdm-MIR164f, mdm-MIR166a, mdm-MIR166b, mdm-MIR166c, mdm-MIR166d, mdm-MIR166e, mdm-MIR166f, mdm-MIR166g, mdm-MIR166h, mdm-MIR166i, mdm-MIR167a, mdm-MIR167b, mdm-MIR167c, mdm-MIR167d, mdm-MIR167e, mdm-MIR167f, mdm-MIR167g, mdm-MIR167h, mdm-MIR167i, mdm-MIR167j, mdm-MIR168a, mdm-MIR168b, mdm-MIR169a, mdm-MIR169b, mdm-MIR169c, mdm-MIR169d, mdm-MIR171a, mdm-MIR171b, mdm-MIR171c, mdm-MIR171d, mdm-MIR171e, mdm-MIR171f, mdm-MIR171g, mdm-MIR171h, mdm-MIR171i, mdm-MIR171j, mdm-MIR171k, mdm-MIR171l, mdm-MIR171m, mdm-MIR171n, mdm-MIR172a, mdm-MIR172b, mdm-MIR172c, mdm-MIR172d, mdm-MIR172e, mdm-MIR172f, mdm-MIR172g, mdm-MIR172h, mdm-MIR172i, mdm-MIR172j, mdm-MIR172k, mdm-MIR172l, mdm-MIR172m, mdm-MIR172n, mdm-MIR172o, mdm-MIR390a, mdm-MIR390b, mdm-MIR390c, mdm-MIR390d, mdm-MIR390e, mdm-MIR390f, mdm-MIR393a, mdm-MIR393b, mdm-MIR393c, mdm-MIR394a, mdm-MIR394b, mdm-MIR396a, mdm-MIR396b, mdm-MIR396c, mdm-MIR396d, mdm-MIR396e, mdm-MIR396f, mdm-MIR396g, mdm-MIR397a, mdm-MIR397b, mdm-MIR398a, mdm-MIR398b, mdm-MIR398c, mdm-MIR399a, mdm-MIR399b, mdm-MIR399c, mdm-MIR399d, mdm-MIR399e, mdm-MIR399f, mdm-MIR399g, mdm-MIR399h, mdm-MIR399i, mdm-MIR399j, mdm-MIR403a, mdm-MIR403b, mdm-MIR408a, mdm-MIR408b, mdm-MIR408c, mdm-MIR408d, mdm-MIR159c, mdm-MIR393d, mdm-MIR393e, mdm-MIR393f, mdm-MIR171o, mdm-MIR169e, mdm-MIR169f, mdm-MIR159d, mdm-MIR159e, mdm-MIR159f, mdm-MIR166j, mdm-MIR399k, mdm-MIR169g, mdm-MIR169h, mdm-MIR169i, mdm-MIR169j, mdm-MIR171p, mdm-MIR393g, mdm-MIR393h, mdm-MIR171q, mdm-MIR169k, mdm-MIR169l, mdm-MIR169m, mdm-MIR169n, mdm-MIR172p, mdm-MIR169o
Conservation status miRNA family Arabidopsis Oryza(rice) Populus(poplar) Predicted target gene(s) miR156 √ √ √Squamosa promoter -binding proteins[57] miR159/319 √ √ √GAMYB transcription factors[57] miR160 √ √ √Auxin response factors (ARF) [57] miR162 √ √ √DICER-LIKE 1 (DCL1) [57] miR164 √ √ √NAC domain transcription factors[57] miR156/166 √ √ √HD-ZIP transcription factors[57] miR167 √ √ √Auxin response factors (ARF) [57] miR168 √ √ √ARGONAUTE 1 (AGO1) [57] miR169 √ √ √HAP2-like transcription factors[57] miR171 √ √ √Scarecrow-like transcription factors[57] miR172 √ √ √APETALA 2 transcription factors[58] miR390 √ √ √TAS3[59] miR393 √ √ √F-box transcription factors (TIR1) [60] miR394 √ √ √F-box transcription factors[60] miR396 √ √ √GRF, rhodenase[60] miR397 √ √ √laccase[60] miR398 √ √ √Copper superoxid dismutase, CytC oxidase[60] miR403 √ √ √ARGONAUTE 2 (AGO2)[20] miR408 √ √Peptide chain release factor, laccase[20] miR475 √PPR proteins[8] miR476 √PPR proteins[8] Figure 1 Differential expression of miRNAs in apple tissues. [score:5]
miR156 and miR159 were expressed in all tissues tested, with miR156 expressed to similar levels in all tissues, while miR159 levels were somewhat lower in xylem than in other tissues tested. [score:5]
Conservation status miRNA family Arabidopsis Oryza(rice) Populus(poplar) Predicted target gene(s) miR156 √ √ √Squamosa promoter -binding proteins[57] miR159/319 √ √ √GAMYB transcription factors[57] miR160 √ √ √Auxin response factors (ARF) [57] miR162 √ √ √DICER-LIKE 1 (DCL1) [57] miR164 √ √ √NAC domain transcription factors[57] miR156/166 √ √ √HD-ZIP transcription factors[57] miR167 √ √ √Auxin response factors (ARF) [57] miR168 √ √ √ARGONAUTE 1 (AGO1) [57] miR169 √ √ √HAP2-like transcription factors[57] miR171 √ √ √Scarecrow-like transcription factors[57] miR172 √ √ √APETALA 2 transcription factors[58] miR390 √ √ √TAS3[59] miR393 √ √ √F-box transcription factors (TIR1) [60] miR394 √ √ √F-box transcription factors[60] miR396 √ √ √GRF, rhodenase[60] miR397 √ √ √laccase[60] miR398 √ √ √Copper superoxid dismutase, CytC oxidase[60] miR403 √ √ √ARGONAUTE 2 (AGO2)[20] miR408 √ √Peptide chain release factor, laccase[20] miR475 √PPR proteins[8] miR476 √PPR proteins[8] Figure 1 Differential expression of miRNAs in apple tissues. [score:5]
The relative levels of expression were higher for miR159, miR166 and miR167 than for miR156 and especially miR172, which was barely detectable. [score:3]
RNA gel-blot analysis was used to examine the expression of miR156, miR159, miR166, miR167 and miR172 in shoot apex, leaf and stem tissues. [score:3]
B, Stem-loop RT-PCR analyses of miR156, miR159, miR166, miR167 and miR172 expression. [score:3]
A, Gel blot analyses of miR156, miR159, miR166, miR167 and miR172 expression. [score:3]
Using this approach miR156, miR159, miR160, miR162, miR167, miR169, miR396 and miR398 were clearly detectable; miR172, miR390 and miR393 produced a weak amplification signal; miR166 and miR397 amplification did not produce the expected product, but resulted in a smear not detected in the minus-RT control; miR164, miR168, miR171, miR394, miR403, miR408 and the miRNAs specific to poplar (miR475 and miR476) were not detected (Figure 4). [score:1]
[1 to 20 of 8 sentences]
4
[+] score: 22
Other miRNAs from this paper: ppe-MIR171f, ppe-MIR394a, ppe-MIR828, ppe-MIR171h, ppe-MIR171a, ppe-MIR171e, ppe-MIR171g, ppe-MIR171b, ppe-MIR171c, mdm-MIR156a, mdm-MIR156b, mdm-MIR156c, mdm-MIR156d, mdm-MIR156e, mdm-MIR156f, mdm-MIR156g, mdm-MIR156h, mdm-MIR156i, mdm-MIR156j, mdm-MIR156k, mdm-MIR156l, mdm-MIR156m, mdm-MIR156n, mdm-MIR156o, mdm-MIR156p, mdm-MIR156q, mdm-MIR156r, mdm-MIR156s, mdm-MIR156t, mdm-MIR156u, mdm-MIR156v, mdm-MIR156w, mdm-MIR156x, mdm-MIR156y, mdm-MIR156z, mdm-MIR156aa, mdm-MIR156ab, mdm-MIR156ac, mdm-MIR156ad, mdm-MIR156ae, mdm-MIR159a, mdm-MIR160a, mdm-MIR160b, mdm-MIR160c, mdm-MIR160d, mdm-MIR160e, mdm-MIR164a, mdm-MIR164b, mdm-MIR164c, mdm-MIR164d, mdm-MIR164e, mdm-MIR164f, mdm-MIR166i, mdm-MIR167a, mdm-MIR167b, mdm-MIR167c, mdm-MIR167d, mdm-MIR167e, mdm-MIR167f, mdm-MIR167g, mdm-MIR167h, mdm-MIR167i, mdm-MIR167j, mdm-MIR171a, mdm-MIR171b, mdm-MIR171c, mdm-MIR171d, mdm-MIR171e, mdm-MIR171f, mdm-MIR171g, mdm-MIR171h, mdm-MIR171i, mdm-MIR171j, mdm-MIR171k, mdm-MIR171l, mdm-MIR171m, mdm-MIR171n, mdm-MIR172a, mdm-MIR172b, mdm-MIR172c, mdm-MIR172d, mdm-MIR172e, mdm-MIR172f, mdm-MIR172g, mdm-MIR172h, mdm-MIR172i, mdm-MIR172j, mdm-MIR172k, mdm-MIR172l, mdm-MIR172m, mdm-MIR172n, mdm-MIR172o, mdm-MIR394a, mdm-MIR394b, mdm-MIR396e, mdm-MIR828a, mdm-MIR828b, mdm-MIR159c, mdm-MIR171o, mdm-MIR858, ppe-MIR156a, ppe-MIR156b, ppe-MIR156c, ppe-MIR156d, ppe-MIR156e, ppe-MIR156f, ppe-MIR156g, ppe-MIR156h, ppe-MIR156i, ppe-MIR159, ppe-MIR160a, ppe-MIR160b, ppe-MIR164a, ppe-MIR164b, ppe-MIR164c, ppe-MIR164d, ppe-MIR167a, ppe-MIR167b, ppe-MIR167c, ppe-MIR167d, ppe-MIR171d, ppe-MIR172a, ppe-MIR172b, ppe-MIR172c, ppe-MIR172d, ppe-MIR394b, ppe-MIR858, mdm-MIR159d, mdm-MIR159e, mdm-MIR159f, mdm-MIR171p, mdm-MIR171q, mdm-MIR172p
However, among the target genes, the SPL and R2R3-MYB transcription factors, both of which are known to negatively regulate flavonoid biosynthesis, were experimentally validated to be targets of miR156 and miR159, respectively [46, 47]. [score:6]
Given the fact that the miR159 is very highly expressed in Rosa and miR159-directed cleavage of R2R3-MYB gene is confirmed using 5' RACE, our results raise an intriguing possibility that miRNAs in roses may be involved in pigment synthesis pathway. [score:4]
In addition, the target gene of miR159 was predicted only in Maroussia (white) and Haedang (pink), which indicates that the colours of the rose flowers, may be tightly regulated via complex mechanism of various miRNAs in nature (Additional file 5). [score:4]
Over -expression of miR156 (Figure  5A) and miR159 (Figure  5B) induced delayed flowering in Arabidopsis by negatively regulating SPL and MYB family transcription factors genes, respectively [60, 61]. [score:4]
Additionally, for other miRNAs (miR159, miR172, miR164, miR394, and miR160 families), we confirmed miRNA-directed cleavage in one or two Rosa cultivars (Figure  5B-F). [score:2]
The miR159 were among the most frequent in our library (187,579; 271,208; 264,412 and 327,436 for ‘ R. thunb. [score:1]
According to previous studies, miR156, miR159, and miR160 are evolutionary conserved in all land plants, and miR164, and miR172 are conserved in seed-bearing plants [57]. [score:1]
[1 to 20 of 7 sentences]
5
[+] score: 14
Other miRNAs from this paper: mdm-MIR482a, mdm-MIR156a, mdm-MIR156b, mdm-MIR156c, mdm-MIR156d, mdm-MIR156e, mdm-MIR156f, mdm-MIR156g, mdm-MIR156h, mdm-MIR156i, mdm-MIR156j, mdm-MIR156k, mdm-MIR156l, mdm-MIR156m, mdm-MIR156n, mdm-MIR156o, mdm-MIR156p, mdm-MIR156q, mdm-MIR156r, mdm-MIR156s, mdm-MIR156t, mdm-MIR156u, mdm-MIR156v, mdm-MIR156w, mdm-MIR156x, mdm-MIR156y, mdm-MIR156z, mdm-MIR156aa, mdm-MIR156ab, mdm-MIR156ac, mdm-MIR156ad, mdm-MIR156ae, mdm-MIR159a, mdm-MIR162a, mdm-MIR162b, mdm-MIR164a, mdm-MIR164b, mdm-MIR164c, mdm-MIR164d, mdm-MIR164e, mdm-MIR164f, mdm-MIR167a, mdm-MIR167b, mdm-MIR167c, mdm-MIR167d, mdm-MIR167e, mdm-MIR167f, mdm-MIR167g, mdm-MIR167h, mdm-MIR167i, mdm-MIR167j, mdm-MIR171a, mdm-MIR171b, mdm-MIR171c, mdm-MIR171d, mdm-MIR171e, mdm-MIR171f, mdm-MIR171g, mdm-MIR171h, mdm-MIR171i, mdm-MIR171j, mdm-MIR171k, mdm-MIR171l, mdm-MIR171m, mdm-MIR171n, mdm-MIR172a, mdm-MIR172b, mdm-MIR172c, mdm-MIR172d, mdm-MIR172e, mdm-MIR172f, mdm-MIR172g, mdm-MIR172h, mdm-MIR172i, mdm-MIR172j, mdm-MIR172k, mdm-MIR172l, mdm-MIR172m, mdm-MIR172n, mdm-MIR172o, mdm-MIR319a, mdm-MIR319b, mdm-MIR390a, mdm-MIR390b, mdm-MIR390c, mdm-MIR390d, mdm-MIR390e, mdm-MIR390f, mdm-MIR393a, mdm-MIR393b, mdm-MIR393c, mdm-MIR395a, mdm-MIR395b, mdm-MIR395c, mdm-MIR395d, mdm-MIR395e, mdm-MIR395f, mdm-MIR395g, mdm-MIR395h, mdm-MIR395i, mdm-MIR396a, mdm-MIR396b, mdm-MIR396c, mdm-MIR396d, mdm-MIR396e, mdm-MIR396f, mdm-MIR396g, mdm-MIR398a, mdm-MIR398b, mdm-MIR398c, mdm-MIR399a, mdm-MIR399b, mdm-MIR399c, mdm-MIR399d, mdm-MIR399e, mdm-MIR399f, mdm-MIR399g, mdm-MIR399h, mdm-MIR399i, mdm-MIR399j, mdm-MIR408a, mdm-MIR3627a, mdm-MIR3627b, mdm-MIR3627c, mdm-MIR477b, mdm-MIR477a, mdm-MIR482b, mdm-MIR482c, mdm-MIR535a, mdm-MIR535b, mdm-MIR535c, mdm-MIR535d, mdm-MIR408b, mdm-MIR408c, mdm-MIR408d, mdm-MIR2118a, mdm-MIR2118b, mdm-MIR2118c, mdm-MIR482d, mdm-MIR5225c, mdm-MIR159c, mdm-MIR7124a, mdm-MIR7124b, mdm-MIR5225a, mdm-MIR5225b, mdm-MIR319c, mdm-MIR393d, mdm-MIR393e, mdm-MIR393f, mdm-MIR171o, mdm-MIR1511, mdm-MIR3627d, mdm-MIR159d, mdm-MIR159e, mdm-MIR159f, mdm-MIR399k, mdm-MIR319d, mdm-MIR319e, mdm-MIR319f, mdm-MIR319g, mdm-MIR395j, mdm-MIR171p, mdm-MIR393g, mdm-MIR393h, mdm-MIR395k, mdm-MIR319h, mdm-MIR171q, mdm-MIR172p, mdm-MIR395l
In DE-miRNAs analysis, only miR398, miR408, miR159, and miR156 expressed stronger in vegetative bud. [score:3]
Besides, miR159 is regulated by GA pathway during flower development (Reyes and Chua, 2007). [score:3]
High expression of miR159 could reduce LFY activity and results in delayed flowering (Achard et al., 2004). [score:3]
Besides, miR159 involves in GA pathway during flower development (Reyes and Chua, 2007). [score:2]
Many DE-miRNAs in our results were reported to be stress responsive, such as the floral bud-enriched ones including miR159, miR171, miR319, miR396, miR399, miR482, miR1511, and miR2118 (Table 2). [score:1]
ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. [score:1]
Several DE-miRNAs were shown to correlate with SPL genes, such as the vegetative bud-enriched miR156, miR159, miR398, and miR408. [score:1]
[1 to 20 of 7 sentences]
6
[+] score: 12
Notably, except for the apple miRNAs/miRNA families mentioned above (Md-miR156, Md-miR164, Md-miR166, Md-miR159, and Md-miR396) that target five transcription factor families, Md-miR395 (miRBase MIMAT0025980) and Md-miR156ab (miRBase MIMAT0025894) exhibited the largest fold change in abundance after ALT1 infection (Figure 2). [score:3]
The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. [score:3]
Another miRNA, miRNA159, represses MYB transcription factors, which participate in gibberellin (GA) -induced pathways required for aleurone development and cell death (Reyes and Chua, 2007; Alonso-Peral et al., 2010). [score:2]
The MYB TFs reported in Arabidopsis are also regulated by miR159 and function in plant growth and the response to stress (Reyes and Chua, 2007; Alonso-Peral et al., 2010; Figures 2, 3). [score:2]
A few studies have reported the presence of conserved abiotic- and biotic-stress -induced miRNAs in apple, such as miR164, miR159, and miR171, suggesting that sRNAs also play an important role in defense in this plant (Zhang et al., 2011). [score:1]
ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. [score:1]
[1 to 20 of 6 sentences]
7
[+] score: 12
Other miRNAs from this paper: mdm-MIR156a, mdm-MIR156b, mdm-MIR156c, mdm-MIR156d, mdm-MIR156e, mdm-MIR156f, mdm-MIR156g, mdm-MIR156h, mdm-MIR156i, mdm-MIR156j, mdm-MIR156k, mdm-MIR156l, mdm-MIR156m, mdm-MIR156n, mdm-MIR156o, mdm-MIR156p, mdm-MIR156q, mdm-MIR156r, mdm-MIR156s, mdm-MIR156t, mdm-MIR156u, mdm-MIR156v, mdm-MIR156w, mdm-MIR156x, mdm-MIR156y, mdm-MIR156z, mdm-MIR156aa, mdm-MIR156ab, mdm-MIR156ac, mdm-MIR156ad, mdm-MIR156ae, mdm-MIR159a, mdm-MIR160a, mdm-MIR160b, mdm-MIR160c, mdm-MIR160d, mdm-MIR160e, mdm-MIR162a, mdm-MIR162b, mdm-MIR166a, mdm-MIR166b, mdm-MIR166c, mdm-MIR166d, mdm-MIR166e, mdm-MIR166f, mdm-MIR166g, mdm-MIR166h, mdm-MIR166i, mdm-MIR167a, mdm-MIR167b, mdm-MIR167c, mdm-MIR167d, mdm-MIR167e, mdm-MIR167f, mdm-MIR167g, mdm-MIR167h, mdm-MIR167i, mdm-MIR167j, mdm-MIR171a, mdm-MIR171b, mdm-MIR171c, mdm-MIR171d, mdm-MIR171e, mdm-MIR171f, mdm-MIR171g, mdm-MIR171h, mdm-MIR171i, mdm-MIR171j, mdm-MIR171k, mdm-MIR171l, mdm-MIR171m, mdm-MIR171n, mdm-MIR172a, mdm-MIR172b, mdm-MIR172c, mdm-MIR172d, mdm-MIR172e, mdm-MIR172f, mdm-MIR172g, mdm-MIR172h, mdm-MIR172i, mdm-MIR172j, mdm-MIR172k, mdm-MIR172l, mdm-MIR172m, mdm-MIR172n, mdm-MIR172o, mdm-MIR319a, mdm-MIR319b, mdm-MIR393a, mdm-MIR393b, mdm-MIR393c, mdm-MIR398a, mdm-MIR398b, mdm-MIR398c, mdm-MIR399a, mdm-MIR399b, mdm-MIR399c, mdm-MIR399d, mdm-MIR399e, mdm-MIR399f, mdm-MIR399g, mdm-MIR399h, mdm-MIR399i, mdm-MIR399j, mdm-MIR3627a, mdm-MIR3627b, mdm-MIR3627c, mdm-MIR391, mdm-MIR535a, mdm-MIR535b, mdm-MIR535c, mdm-MIR535d, mdm-MIR827, mdm-MIR5225c, mdm-MIR159c, mdm-MIR5225a, mdm-MIR5225b, mdm-MIR319c, mdm-MIR7125, mdm-MIR7126, mdm-MIR393d, mdm-MIR393e, mdm-MIR393f, mdm-MIR171o, mdm-MIR7128, mdm-MIR858, mdm-MIR1511, mdm-MIR3627d, mdm-MIR159d, mdm-MIR159e, mdm-MIR159f, mdm-MIR166j, mdm-MIR399k, mdm-MIR319d, mdm-MIR319e, mdm-MIR319f, mdm-MIR319g, mdm-MIR171p, mdm-MIR393g, mdm-MIR393h, mdm-MIR319h, mdm-MIR171q, mdm-MIR172p
The MYB domain protein 65 was targeted by both mdm-miR159 and mdm-miR319, and the autoinhibited Ca2 + −ATPase was regulated by both mdm-miR858 and mdm-miR3627. [score:6]
In total, 127 targets of 25 known miRNA families, including mdm-miR156, mdm-miR159, mdm-miR166 and mdm-miR172, were detected in our library (Table  3; Additional file 6). [score:3]
Additionally, the expression levels of some miRNAs, including mdm-miR159, 164, 172, 319, 477 and 827, were found at very low levels, with read counts ranging from 0 to 10 between the A and J libraries. [score:3]
[1 to 20 of 3 sentences]
8
[+] score: 4
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR396e, gma-MIR156d, gma-MIR156e, gma-MIR156c, gma-MIR159a, gma-MIR160a, gma-MIR166a, gma-MIR166b, gma-MIR167a, gma-MIR167b, gma-MIR172a, gma-MIR172b, gma-MIR156a, gma-MIR396a, gma-MIR396b, gma-MIR156b, gma-MIR169a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR169r, gma-MIR159b, gma-MIR159c, gma-MIR162a, gma-MIR164a, gma-MIR167c, gma-MIR169b, gma-MIR169c, gma-MIR171a, gma-MIR171b, gma-MIR482a, sly-MIR160a, sly-MIR166a, sly-MIR166b, sly-MIR167a, sly-MIR169a, sly-MIR169b, sly-MIR169c, sly-MIR169d, sly-MIR171a, sly-MIR171b, sly-MIR171c, sly-MIR171d, sly-MIR395a, sly-MIR395b, sly-MIR156a, sly-MIR156b, sly-MIR156c, sly-MIR159, sly-MIR162, sly-MIR172a, sly-MIR172b, osa-MIR396f, gma-MIR167d, gma-MIR396c, mdm-MIR482a, gma-MIR167e, gma-MIR167f, gma-MIR172c, gma-MIR172d, gma-MIR172e, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, gma-MIR396d, gma-MIR482b, gma-MIR167g, gma-MIR156f, gma-MIR169d, gma-MIR172f, gma-MIR171c, gma-MIR169e, gma-MIR394b, gma-MIR156g, gma-MIR159d, gma-MIR394a, gma-MIR396e, gma-MIR156h, gma-MIR156i, gma-MIR160b, gma-MIR160c, gma-MIR160d, gma-MIR160e, gma-MIR162b, gma-MIR164b, gma-MIR164c, gma-MIR164d, gma-MIR166c, gma-MIR166d, gma-MIR166e, gma-MIR166f, gma-MIR166g, gma-MIR166h, gma-MIR169f, gma-MIR169g, gma-MIR171d, gma-MIR171e, gma-MIR171f, gma-MIR171g, gma-MIR394c, gma-MIR408d, gma-MIR482c, gma-MIR171h, gma-MIR171i, gma-MIR169h, gma-MIR167h, gma-MIR169i, gma-MIR396f, gma-MIR396g, gma-MIR167i, sly-MIR482e, sly-MIR482a, gma-MIR171j, gma-MIR395a, gma-MIR395b, gma-MIR395c, gma-MIR408a, gma-MIR408b, gma-MIR408c, gma-MIR156j, gma-MIR156k, gma-MIR156l, gma-MIR156m, gma-MIR156n, gma-MIR156o, gma-MIR159e, gma-MIR159f, gma-MIR162c, gma-MIR166i, gma-MIR166j, gma-MIR169j, gma-MIR169k, gma-MIR169l, gma-MIR169m, gma-MIR169n, gma-MIR171k, gma-MIR172g, gma-MIR172h, gma-MIR172i, gma-MIR172j, gma-MIR396h, gma-MIR396i, gma-MIR482d, gma-MIR167j, gma-MIR171l, gma-MIR156p, gma-MIR171m, gma-MIR172k, gma-MIR171n, gma-MIR156q, gma-MIR171o, gma-MIR172l, gma-MIR169o, gma-MIR171p, gma-MIR394d, gma-MIR169p, gma-MIR156r, gma-MIR396j, gma-MIR171q, gma-MIR156s, gma-MIR169r, gma-MIR169s, gma-MIR396k, gma-MIR166k, gma-MIR156t, gma-MIR482e, gma-MIR171r, gma-MIR394e, gma-MIR169t, gma-MIR171s, gma-MIR166l, gma-MIR171t, gma-MIR394f, gma-MIR171u, gma-MIR395d, gma-MIR395e, gma-MIR395f, gma-MIR395g, gma-MIR166m, gma-MIR169u, sly-MIR482b, sly-MIR482c, gma-MIR156u, gma-MIR156v, gma-MIR156w, gma-MIR156x, gma-MIR156y, gma-MIR156z, gma-MIR156aa, gma-MIR156ab, gma-MIR160f, gma-MIR164e, gma-MIR164f, gma-MIR164g, gma-MIR164h, gma-MIR164i, gma-MIR164j, gma-MIR164k, gma-MIR166n, gma-MIR166o, gma-MIR166p, gma-MIR166q, gma-MIR166r, gma-MIR166s, gma-MIR166t, gma-MIR166u, gma-MIR169v, gma-MIR394g, gma-MIR395h, gma-MIR395i, gma-MIR395j, gma-MIR395k, gma-MIR395l, gma-MIR395m, mdm-MIR156a, mdm-MIR156b, mdm-MIR156c, mdm-MIR156d, mdm-MIR156e, mdm-MIR156f, mdm-MIR156g, mdm-MIR156h, mdm-MIR156i, mdm-MIR156j, mdm-MIR156k, mdm-MIR156l, mdm-MIR156m, mdm-MIR156n, mdm-MIR156o, mdm-MIR156p, mdm-MIR156q, mdm-MIR156r, mdm-MIR156s, mdm-MIR156t, mdm-MIR156u, mdm-MIR156v, mdm-MIR156w, mdm-MIR156x, mdm-MIR156y, mdm-MIR156z, mdm-MIR156aa, mdm-MIR156ab, mdm-MIR156ac, mdm-MIR156ad, mdm-MIR156ae, mdm-MIR159a, mdm-MIR160a, mdm-MIR160b, mdm-MIR160c, mdm-MIR160d, mdm-MIR160e, mdm-MIR162a, mdm-MIR162b, mdm-MIR164a, mdm-MIR164b, mdm-MIR164c, mdm-MIR164d, mdm-MIR164e, mdm-MIR164f, mdm-MIR166a, mdm-MIR166b, mdm-MIR166c, mdm-MIR166d, mdm-MIR166e, mdm-MIR166f, mdm-MIR166g, mdm-MIR166h, mdm-MIR166i, mdm-MIR167a, mdm-MIR167b, mdm-MIR167c, mdm-MIR167d, mdm-MIR167e, mdm-MIR167f, mdm-MIR167g, mdm-MIR167h, mdm-MIR167i, mdm-MIR167j, mdm-MIR169a, mdm-MIR169b, mdm-MIR169c, mdm-MIR169d, mdm-MIR171a, mdm-MIR171b, mdm-MIR171c, mdm-MIR171d, mdm-MIR171e, mdm-MIR171f, mdm-MIR171g, mdm-MIR171h, mdm-MIR171i, mdm-MIR171j, mdm-MIR171k, mdm-MIR171l, mdm-MIR171m, mdm-MIR171n, mdm-MIR172a, mdm-MIR172b, mdm-MIR172c, mdm-MIR172d, mdm-MIR172e, mdm-MIR172f, mdm-MIR172g, mdm-MIR172h, mdm-MIR172i, mdm-MIR172j, mdm-MIR172k, mdm-MIR172l, mdm-MIR172m, mdm-MIR172n, mdm-MIR172o, mdm-MIR394a, mdm-MIR394b, mdm-MIR395a, mdm-MIR395b, mdm-MIR395c, mdm-MIR395d, mdm-MIR395e, mdm-MIR395f, mdm-MIR395g, mdm-MIR395h, mdm-MIR395i, mdm-MIR396a, mdm-MIR396b, mdm-MIR396c, mdm-MIR396d, mdm-MIR396e, mdm-MIR396f, mdm-MIR396g, mdm-MIR408a, mdm-MIR482b, mdm-MIR482c, mdm-MIR408b, mdm-MIR408c, mdm-MIR408d, mdm-MIR482d, mdm-MIR159c, mdm-MIR171o, mdm-MIR169e, mdm-MIR169f, sly-MIR164a, sly-MIR164b, sly-MIR394, sly-MIR166c, sly-MIR156d, sly-MIR156e, sly-MIR396a, sly-MIR167b, sly-MIR482d, sly-MIR169e, sly-MIR396b, sly-MIR171e, gma-MIR167k, gma-MIR167l, gma-MIR169w, sly-MIR172c, sly-MIR408, sly-MIR172d, sly-MIR169f, sly-MIR171f, mdm-MIR159d, mdm-MIR159e, mdm-MIR159f, mdm-MIR166j, mdm-MIR395j, mdm-MIR169g, mdm-MIR169h, mdm-MIR169i, mdm-MIR169j, mdm-MIR171p, mdm-MIR395k, mdm-MIR171q, mdm-MIR169k, mdm-MIR169l, mdm-MIR169m, mdm-MIR169n, mdm-MIR172p, mdm-MIR395l, mdm-MIR169o
However, miRNA156, miRNA159 and miR172 targeted more than one gene family. [score:3]
These thirteen conserved pre-miRNAs belonged to the miR156 (6), miR159 (4), miR160 (2) and miR170 (1) families. [score:1]
[1 to 20 of 2 sentences]
9
[+] score: 3
Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. [score:3]
[1 to 20 of 1 sentences]
10
[+] score: 2
Guo and the co-workers proposed that miR159-MYB33 pathway acts on vegetative phase change may be dependent on light [61]. [score:1]
Recently, in Arabidopsis, miR159 has been found to modulate vegetative phase change upstream of miR156 through MYB33 [61]. [score:1]
[1 to 20 of 2 sentences]
11
[+] score: 1
Among them, two are from the miR168 family, and another two are from miR159 and miR530 families (Figure 7). [score:1]
[1 to 20 of 1 sentences]