sort by

5 publications mentioning mdm-MIR395c

Open access articles that are associated with the species Malus domestica and mention the gene name MIR395c. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 141
Md-miR395 expression was significantly upregulated in these transformed lines (Figure 4C), and the levels of its target mRNA MdWRKY26 were significantly downregulated (Figure 4D). [score:11]
In the present study we show that, while ALT1 inoculation induced the upregulation of Md-miR156ab and Md-miR395 expression, this alone did not result in a dramatic suppression of their target WRKY genes, possibly because these genes may also be activated by other factors. [score:10]
These results suggest that ALT1 infection induces the production of Md-miR395, which suppresses MdWRKY26, while the overexpression of MdWRKY26 enhances the disease resistance of GD through the induction of MdPR1, MdPR3-1, MdPR3-2, MdPR4, MdPR5, MdPR8, MdPR10-1, and MdPR10-2 expression. [score:9]
In GD, ALT1 -induced Md-miR156ab and Md-miR395 suppress MdWRKYN1 and MdWRKY26 expression then decrease MdPR1, MdPR3-1, MdPR3-2, MdPR4, MdPR5, MdPR8, MdPR10-1, and MdPR10-2 expression, resulting in susceptibility to ALT1. [score:7]
Based on our study, ALT1 -induced Md-miR156ab and Md-miR395 suppress MdWRKYN1 and MdWRKY26 expression, thereby decreasing the expression of some PR genes, and resulting in susceptibility to ALT1 in GD (Figure 7). [score:7]
ALT1 -induced Md-miR156ab and Md-miR395 suppress MdWRKYN1 and MdWRKY26 expression, thereby decreasing the expression of some PR genes, and resulting in susceptibility to ALT1 in GD. [score:7]
Figure 6Md-miR395 affects ALT1susceptibility by suppressing the expression of MdWRKY26, which regulates various PR genes. [score:6]
At 24 hpi with ALT1, we identified an alleviation of the Md-miR395 -induced suppression of MdWRKY26 transcripts (Figure 6H), further confirming Md-miR395 as a regulator of MdWRKY26 expression in apple. [score:6]
The STTM-miR395 -expressing plants had a lower rate of disease (15.71%) compared to the WT (34.37%) and EV (36.69%) plants, indicating an improved resistance to apple leaf spot disease (Figures 6I,J, Supplemental Table 8). [score:6]
WT, non-infiltrated GD plants; EV, empty-vector (pFGC5941)-infiltrated plants; OE-miR156ab, Md-miR156ab -overexpressing GD plants; OE-miR395, Md-miR395 -overexpressing GD plants. [score:5]
MdWRKY26 may induce eight PR genes to regulate apple resistanceTo investigate whether MdWRKY26, which contains two WRKY domains, could play a role in plant defense against apple leaf spot disease, we overexpressed MdWRKY26 and silenced its regulatory miRNA, Md-miR395. [score:5]
Md-miR395 had a 4.98-fold upregulation following ALT1 infection, and regulates a typical WRKY transcription factor, MdWRKY26 (NCBI XM_008386494.2), containing two WRKY domains (Figures 2, 3, 4A). [score:5]
In resistant cultivars, we speculate that ALT1 may not be able to induce the production of Md-miR156ab and Md-miR395, or may somehow induce MdWRKYN1 and MdWRKY26 expression, increasing the expression of the PR genes and resulting in resistance to this pathogen. [score:5]
Real-time PCR showed that MdPR1, MdPR3-1, MdPR3-2, MdPR4, MdPR5, MdPR8, MdPR10-1, and MdPR10-2 expression levels were significantly higher in the STTM-miR395 -expressing plants after ALT1 inoculation than in the wild-type and empty-vector controls (Figure 6K). [score:5]
The miRNA Md-miR156ab targeted transcripts encoding a WRKY transcription factor, MdWRKYN1, while MdWRKY26 transcripts were targeted by Md-miR395. [score:5]
We synthesized a STTM sequence to block the binding of Md-miR395 to its target sequences, fused it into the vector pFGC5941 (Figure 6F), and expressed STTM-miR395 in the susceptible apple variety GD. [score:5]
To investigate whether MdWRKY26, which contains two WRKY domains, could play a role in plant defense against apple leaf spot disease, we overexpressed MdWRKY26 and silenced its regulatory miRNA, Md-miR395. [score:4]
We therefore preliminarily consider that apple leaf spot disease may be related, in the pathosystem we have investigated, to the PR genes, whose accumulation is regulated by MdWRKY26 in the absence of suppression by Md-miR395. [score:4]
Supplemental Table 8The disease rate of WT, EV, and STTM-miR395 and t-test analysis. [score:3]
Notably, except for the apple miRNAs/miRNA families mentioned above (Md-miR156, Md-miR164, Md-miR166, Md-miR159, and Md-miR396) that target five transcription factor families, Md-miR395 (miRBase MIMAT0025980) and Md-miR156ab (miRBase MIMAT0025894) exhibited the largest fold change in abundance after ALT1 infection (Figure 2). [score:3]
MdWRKYN1 and MdWRKY26 are suppressed by Md-miR156ab and Md-miR395, respectively. [score:3]
In the present study, a miRNA high-seq assay was performed in GD, leading to the identification of two miRNAs, Md-miRNA156ab and Md-miRNA395, which target two different WRKY transcription factors to regulate the resistance of apple to the pathogenic ALT1 fungus. [score:3]
Figure 4 The miRNAs Md-miR156ab and Md-miR395 are highly induced in ALT1-inoculated “Golden Delicious” (GD) apple leaves, and target WRKY transcription factors. [score:3]
Independent t-test demonstrated that there was significant difference (P < 0.01) in the disease rate of EV and STTM-miR395 under ALT1-inoculated. [score:3]
Agrobacterium tumefaciens infiltrationFull-length Md-MIR156ab, Md-MIR395, STTM-miR156ab, STTM-miR395, MdWRKYN1, and MdWRKY26 gene sequences were individually inserted into the plant expression vector pFGC5941 (GenBank AY310901) at the NcoI/BamHI restriction site (primers listed in Supplemental Table 3), using the empty pFGC5941 vector as the control. [score:2]
Full-length Md-MIR156ab, Md-MIR395, STTM-miR156ab, STTM-miR395, MdWRKYN1, and MdWRKY26 gene sequences were individually inserted into the plant expression vector pFGC5941 (GenBank AY310901) at the NcoI/BamHI restriction site (primers listed in Supplemental Table 3), using the empty pFGC5941 vector as the control. [score:2]
Interestingly, Md-miR395 and Md-miR156ab both exhibit the characteristic fold-back RNA secondary structure (Supplemental Figures 4A,B) and target genes encoding WRKY transcription factors (Figure 3, Supplemental Figure 3). [score:1]
Figure 7 Mo del for the role of Md-miR156ab and Md-miR395 in GD plants infected with ALT1. [score:1]
WT, non-infiltrated GD plants; EV, empty-vector (pFGC5941)-infiltrated plants; STTM-miR395, GD plants with silenced Md-miR395 activity. [score:1]
In (G–K) WT, non-infiltrated GD plants; EV, empty-vector (pFGC5941)-infiltrated plants; STTM-miR395, GD plants with silenced Md-miR395 activity. [score:1]
This analysis was also performed using a vector containing Md-MIR395 (Figure 4B). [score:1]
The red line indicates the position and sequence of Md-miR156ab and Md-miR395. [score:1]
After 4 days, real-time PCR indicated a significant decrease in Md-miR395 transcripts (Figure 6G). [score:1]
[1 to 20 of 33 sentences]
2
[+] score: 14
Other miRNAs from this paper: mdm-MIR482a, mdm-MIR156a, mdm-MIR156b, mdm-MIR156c, mdm-MIR156d, mdm-MIR156e, mdm-MIR156f, mdm-MIR156g, mdm-MIR156h, mdm-MIR156i, mdm-MIR156j, mdm-MIR156k, mdm-MIR156l, mdm-MIR156m, mdm-MIR156n, mdm-MIR156o, mdm-MIR156p, mdm-MIR156q, mdm-MIR156r, mdm-MIR156s, mdm-MIR156t, mdm-MIR156u, mdm-MIR156v, mdm-MIR156w, mdm-MIR156x, mdm-MIR156y, mdm-MIR156z, mdm-MIR156aa, mdm-MIR156ab, mdm-MIR156ac, mdm-MIR156ad, mdm-MIR156ae, mdm-MIR160a, mdm-MIR160b, mdm-MIR160c, mdm-MIR160d, mdm-MIR160e, mdm-MIR164a, mdm-MIR164b, mdm-MIR164c, mdm-MIR164d, mdm-MIR164e, mdm-MIR164f, mdm-MIR167a, mdm-MIR167b, mdm-MIR167c, mdm-MIR167d, mdm-MIR167e, mdm-MIR167f, mdm-MIR167g, mdm-MIR167h, mdm-MIR167i, mdm-MIR167j, mdm-MIR168a, mdm-MIR169a, mdm-MIR169b, mdm-MIR169c, mdm-MIR169d, mdm-MIR171a, mdm-MIR171b, mdm-MIR171c, mdm-MIR171d, mdm-MIR171e, mdm-MIR171f, mdm-MIR171g, mdm-MIR171h, mdm-MIR171i, mdm-MIR171j, mdm-MIR171k, mdm-MIR171l, mdm-MIR171m, mdm-MIR171n, mdm-MIR172a, mdm-MIR172b, mdm-MIR172c, mdm-MIR172d, mdm-MIR172e, mdm-MIR172f, mdm-MIR172g, mdm-MIR172h, mdm-MIR172i, mdm-MIR172j, mdm-MIR172k, mdm-MIR172l, mdm-MIR172m, mdm-MIR172n, mdm-MIR172o, mdm-MIR393a, mdm-MIR393b, mdm-MIR393c, mdm-MIR395a, mdm-MIR395b, mdm-MIR395d, mdm-MIR395e, mdm-MIR395f, mdm-MIR395g, mdm-MIR395h, mdm-MIR395i, mdm-MIR396a, mdm-MIR396b, mdm-MIR396c, mdm-MIR396d, mdm-MIR396e, mdm-MIR396f, mdm-MIR396g, mdm-MIR397a, mdm-MIR397b, mdm-MIR398a, mdm-MIR398b, mdm-MIR398c, mdm-MIR399a, mdm-MIR399d, mdm-MIR399i, mdm-MIR408a, mdm-MIR3627a, mdm-MIR3627b, mdm-MIR3627c, mdm-MIR391, mdm-MIR477b, mdm-MIR477a, mdm-MIR482b, mdm-MIR482c, mdm-MIR535a, mdm-MIR535b, mdm-MIR535c, mdm-MIR535d, mdm-MIR827, mdm-MIR828a, mdm-MIR828b, mdm-MIR408b, mdm-MIR408c, mdm-MIR408d, mdm-MIR482d, mdm-MIR7121a, mdm-MIR7121b, mdm-MIR7121c, mdm-MIR7121d, mdm-MIR7121e, mdm-MIR7121f, mdm-MIR7121g, mdm-MIR7121h, mdm-MIR5225c, mdm-MIR7124a, mdm-MIR5225a, mdm-MIR5225b, mdm-MIR7125, mdm-MIR393d, mdm-MIR393e, mdm-MIR393f, mdm-MIR7127a, mdm-MIR7127b, mdm-MIR171o, mdm-MIR169e, mdm-MIR169f, mdm-MIR858, mdm-MIR3627d, mdm-MIR395j, mdm-MIR169g, mdm-MIR169h, mdm-MIR169i, mdm-MIR169j, mdm-MIR171p, mdm-MIR393g, mdm-MIR393h, mdm-MIR395k, mdm-MIR171q, mdm-MIR169k, mdm-MIR169l, mdm-MIR169m, mdm-MIR169n, mdm-MIR172p, mdm-MIR395l, mdm-MIR169o
For instance, miR395 was predicted to target ATP sulfurylase and ubiquitin-conjugating enzyme E2; miR477 was found to target DELLA protein GAI1-like and pentatricopeptide repeat-containing protein; and miR5225 was predicted to target LRR receptor-like serine/threonine-protein kinase. [score:7]
For example, we found that miR160, miR156, miR171, miR172, miR395, and miR398 were differentially expressed upon debagging, these families are predicted to be regulated by UV-B radiation in Arabidopsis and juvenile maize leaves, respectively (Zhou et al., 2007). [score:4]
The expression levels of miR398 in T2 significantly increased 4-fold compared to that in T1, followed by miR7124a-b, miR482a-3p, miR399d, miR408a, and miR395. [score:2]
For example, seven known miRNAs (miR160, miR164, miR395, miR477, miR5225, miR7125, and miR828) were present in all the three groups. [score:1]
[1 to 20 of 4 sentences]
3
[+] score: 8
Other miRNAs from this paper: mdm-MIR482a, mdm-MIR156a, mdm-MIR156b, mdm-MIR156c, mdm-MIR156d, mdm-MIR156e, mdm-MIR156f, mdm-MIR156g, mdm-MIR156h, mdm-MIR156i, mdm-MIR156j, mdm-MIR156k, mdm-MIR156l, mdm-MIR156m, mdm-MIR156n, mdm-MIR156o, mdm-MIR156p, mdm-MIR156q, mdm-MIR156r, mdm-MIR156s, mdm-MIR156t, mdm-MIR156u, mdm-MIR156v, mdm-MIR156w, mdm-MIR156x, mdm-MIR156y, mdm-MIR156z, mdm-MIR156aa, mdm-MIR156ab, mdm-MIR156ac, mdm-MIR156ad, mdm-MIR156ae, mdm-MIR159a, mdm-MIR159b, mdm-MIR160a, mdm-MIR160b, mdm-MIR160c, mdm-MIR160d, mdm-MIR160e, mdm-MIR164a, mdm-MIR164b, mdm-MIR164c, mdm-MIR164d, mdm-MIR164e, mdm-MIR164f, mdm-MIR166a, mdm-MIR166b, mdm-MIR166c, mdm-MIR166d, mdm-MIR166e, mdm-MIR166f, mdm-MIR166g, mdm-MIR166h, mdm-MIR166i, mdm-MIR167a, mdm-MIR167b, mdm-MIR167c, mdm-MIR167d, mdm-MIR167e, mdm-MIR167f, mdm-MIR167g, mdm-MIR167h, mdm-MIR167i, mdm-MIR167j, mdm-MIR168a, mdm-MIR168b, mdm-MIR169a, mdm-MIR169b, mdm-MIR169c, mdm-MIR169d, mdm-MIR171a, mdm-MIR171b, mdm-MIR171c, mdm-MIR171d, mdm-MIR171e, mdm-MIR171f, mdm-MIR171g, mdm-MIR171h, mdm-MIR171i, mdm-MIR171j, mdm-MIR171k, mdm-MIR171l, mdm-MIR171m, mdm-MIR171n, mdm-MIR172a, mdm-MIR172b, mdm-MIR172c, mdm-MIR172d, mdm-MIR172e, mdm-MIR172f, mdm-MIR172g, mdm-MIR172h, mdm-MIR172i, mdm-MIR172j, mdm-MIR172k, mdm-MIR172l, mdm-MIR172m, mdm-MIR172n, mdm-MIR172o, mdm-MIR393a, mdm-MIR393b, mdm-MIR393c, mdm-MIR395a, mdm-MIR395b, mdm-MIR395d, mdm-MIR395e, mdm-MIR395f, mdm-MIR395g, mdm-MIR395h, mdm-MIR395i, mdm-MIR396a, mdm-MIR396b, mdm-MIR396c, mdm-MIR396d, mdm-MIR396e, mdm-MIR396f, mdm-MIR396g, mdm-MIR397a, mdm-MIR397b, mdm-MIR399a, mdm-MIR399b, mdm-MIR399c, mdm-MIR399d, mdm-MIR399e, mdm-MIR399f, mdm-MIR399g, mdm-MIR399h, mdm-MIR399i, mdm-MIR399j, mdm-MIR391, mdm-MIR482b, mdm-MIR482c, mdm-MIR535a, mdm-MIR535b, mdm-MIR535c, mdm-MIR535d, mdm-MIR827, mdm-MIR828a, mdm-MIR828b, mdm-MIR482d, mdm-MIR7123a, mdm-MIR7123b, mdm-MIR5225c, mdm-MIR159c, mdm-MIR7124a, mdm-MIR7124b, mdm-MIR5225a, mdm-MIR5225b, mdm-MIR7125, mdm-MIR7126, mdm-MIR393d, mdm-MIR393e, mdm-MIR393f, mdm-MIR171o, mdm-MIR169e, mdm-MIR169f, mdm-MIR7128, mdm-MIR858, mdm-MIR1511, mdm-MIR159d, mdm-MIR159e, mdm-MIR159f, mdm-MIR166j, mdm-MIR399k, mdm-MIR395j, mdm-MIR169g, mdm-MIR169h, mdm-MIR169i, mdm-MIR169j, mdm-MIR171p, mdm-MIR393g, mdm-MIR393h, mdm-MIR395k, mdm-MIR171q, mdm-MIR169k, mdm-MIR169l, mdm-MIR169m, mdm-MIR169n, mdm-MIR172p, mdm-MIR395l, mdm-MIR169o
In contrast, five members of mdm-miR164, three members of mdm-miR171, six members of mdm-miR172, three members of mdm-miR393, nine members of mdm-miR395, two members of mdm-miR396, six members of mdm-miR399, two members of mdm-miR5225, two members of mdm-miR7124, and mdm-miR858 were all downregulated in YF shoot tips. [score:4]
Mineral nutrition affects plant physiology and growth and the potential targets of miR169, miR166, miR7125, miR393, and miR395 are involved in mineral element response. [score:3]
For example, all of the mdm-miR395 family members had the same number of counts. [score:1]
[1 to 20 of 3 sentences]
4
[+] score: 8
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR396e, gma-MIR156d, gma-MIR156e, gma-MIR156c, gma-MIR159a, gma-MIR160a, gma-MIR166a, gma-MIR166b, gma-MIR167a, gma-MIR167b, gma-MIR172a, gma-MIR172b, gma-MIR156a, gma-MIR396a, gma-MIR396b, gma-MIR156b, gma-MIR169a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR169r, gma-MIR159b, gma-MIR159c, gma-MIR162a, gma-MIR164a, gma-MIR167c, gma-MIR169b, gma-MIR169c, gma-MIR171a, gma-MIR171b, gma-MIR482a, sly-MIR160a, sly-MIR166a, sly-MIR166b, sly-MIR167a, sly-MIR169a, sly-MIR169b, sly-MIR169c, sly-MIR169d, sly-MIR171a, sly-MIR171b, sly-MIR171c, sly-MIR171d, sly-MIR395a, sly-MIR395b, sly-MIR156a, sly-MIR156b, sly-MIR156c, sly-MIR159, sly-MIR162, sly-MIR172a, sly-MIR172b, osa-MIR396f, gma-MIR167d, gma-MIR396c, mdm-MIR482a, gma-MIR167e, gma-MIR167f, gma-MIR172c, gma-MIR172d, gma-MIR172e, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, gma-MIR396d, gma-MIR482b, gma-MIR167g, gma-MIR156f, gma-MIR169d, gma-MIR172f, gma-MIR171c, gma-MIR169e, gma-MIR394b, gma-MIR156g, gma-MIR159d, gma-MIR394a, gma-MIR396e, gma-MIR156h, gma-MIR156i, gma-MIR160b, gma-MIR160c, gma-MIR160d, gma-MIR160e, gma-MIR162b, gma-MIR164b, gma-MIR164c, gma-MIR164d, gma-MIR166c, gma-MIR166d, gma-MIR166e, gma-MIR166f, gma-MIR166g, gma-MIR166h, gma-MIR169f, gma-MIR169g, gma-MIR171d, gma-MIR171e, gma-MIR171f, gma-MIR171g, gma-MIR394c, gma-MIR408d, gma-MIR482c, gma-MIR171h, gma-MIR171i, gma-MIR169h, gma-MIR167h, gma-MIR169i, gma-MIR396f, gma-MIR396g, gma-MIR167i, sly-MIR482e, sly-MIR482a, gma-MIR171j, gma-MIR395a, gma-MIR395b, gma-MIR395c, gma-MIR408a, gma-MIR408b, gma-MIR408c, gma-MIR156j, gma-MIR156k, gma-MIR156l, gma-MIR156m, gma-MIR156n, gma-MIR156o, gma-MIR159e, gma-MIR159f, gma-MIR162c, gma-MIR166i, gma-MIR166j, gma-MIR169j, gma-MIR169k, gma-MIR169l, gma-MIR169m, gma-MIR169n, gma-MIR171k, gma-MIR172g, gma-MIR172h, gma-MIR172i, gma-MIR172j, gma-MIR396h, gma-MIR396i, gma-MIR482d, gma-MIR167j, gma-MIR171l, gma-MIR156p, gma-MIR171m, gma-MIR172k, gma-MIR171n, gma-MIR156q, gma-MIR171o, gma-MIR172l, gma-MIR169o, gma-MIR171p, gma-MIR394d, gma-MIR169p, gma-MIR156r, gma-MIR396j, gma-MIR171q, gma-MIR156s, gma-MIR169r, gma-MIR169s, gma-MIR396k, gma-MIR166k, gma-MIR156t, gma-MIR482e, gma-MIR171r, gma-MIR394e, gma-MIR169t, gma-MIR171s, gma-MIR166l, gma-MIR171t, gma-MIR394f, gma-MIR171u, gma-MIR395d, gma-MIR395e, gma-MIR395f, gma-MIR395g, gma-MIR166m, gma-MIR169u, sly-MIR482b, sly-MIR482c, gma-MIR156u, gma-MIR156v, gma-MIR156w, gma-MIR156x, gma-MIR156y, gma-MIR156z, gma-MIR156aa, gma-MIR156ab, gma-MIR160f, gma-MIR164e, gma-MIR164f, gma-MIR164g, gma-MIR164h, gma-MIR164i, gma-MIR164j, gma-MIR164k, gma-MIR166n, gma-MIR166o, gma-MIR166p, gma-MIR166q, gma-MIR166r, gma-MIR166s, gma-MIR166t, gma-MIR166u, gma-MIR169v, gma-MIR394g, gma-MIR395h, gma-MIR395i, gma-MIR395j, gma-MIR395k, gma-MIR395l, gma-MIR395m, mdm-MIR156a, mdm-MIR156b, mdm-MIR156c, mdm-MIR156d, mdm-MIR156e, mdm-MIR156f, mdm-MIR156g, mdm-MIR156h, mdm-MIR156i, mdm-MIR156j, mdm-MIR156k, mdm-MIR156l, mdm-MIR156m, mdm-MIR156n, mdm-MIR156o, mdm-MIR156p, mdm-MIR156q, mdm-MIR156r, mdm-MIR156s, mdm-MIR156t, mdm-MIR156u, mdm-MIR156v, mdm-MIR156w, mdm-MIR156x, mdm-MIR156y, mdm-MIR156z, mdm-MIR156aa, mdm-MIR156ab, mdm-MIR156ac, mdm-MIR156ad, mdm-MIR156ae, mdm-MIR159a, mdm-MIR159b, mdm-MIR160a, mdm-MIR160b, mdm-MIR160c, mdm-MIR160d, mdm-MIR160e, mdm-MIR162a, mdm-MIR162b, mdm-MIR164a, mdm-MIR164b, mdm-MIR164c, mdm-MIR164d, mdm-MIR164e, mdm-MIR164f, mdm-MIR166a, mdm-MIR166b, mdm-MIR166c, mdm-MIR166d, mdm-MIR166e, mdm-MIR166f, mdm-MIR166g, mdm-MIR166h, mdm-MIR166i, mdm-MIR167a, mdm-MIR167b, mdm-MIR167c, mdm-MIR167d, mdm-MIR167e, mdm-MIR167f, mdm-MIR167g, mdm-MIR167h, mdm-MIR167i, mdm-MIR167j, mdm-MIR169a, mdm-MIR169b, mdm-MIR169c, mdm-MIR169d, mdm-MIR171a, mdm-MIR171b, mdm-MIR171c, mdm-MIR171d, mdm-MIR171e, mdm-MIR171f, mdm-MIR171g, mdm-MIR171h, mdm-MIR171i, mdm-MIR171j, mdm-MIR171k, mdm-MIR171l, mdm-MIR171m, mdm-MIR171n, mdm-MIR172a, mdm-MIR172b, mdm-MIR172c, mdm-MIR172d, mdm-MIR172e, mdm-MIR172f, mdm-MIR172g, mdm-MIR172h, mdm-MIR172i, mdm-MIR172j, mdm-MIR172k, mdm-MIR172l, mdm-MIR172m, mdm-MIR172n, mdm-MIR172o, mdm-MIR394a, mdm-MIR394b, mdm-MIR395a, mdm-MIR395b, mdm-MIR395d, mdm-MIR395e, mdm-MIR395f, mdm-MIR395g, mdm-MIR395h, mdm-MIR395i, mdm-MIR396a, mdm-MIR396b, mdm-MIR396c, mdm-MIR396d, mdm-MIR396e, mdm-MIR396f, mdm-MIR396g, mdm-MIR408a, mdm-MIR482b, mdm-MIR482c, mdm-MIR408b, mdm-MIR408c, mdm-MIR408d, mdm-MIR482d, mdm-MIR159c, mdm-MIR171o, mdm-MIR169e, mdm-MIR169f, sly-MIR164a, sly-MIR164b, sly-MIR394, sly-MIR166c, sly-MIR156d, sly-MIR156e, sly-MIR396a, sly-MIR167b, sly-MIR482d, sly-MIR169e, sly-MIR396b, sly-MIR171e, gma-MIR167k, gma-MIR167l, gma-MIR169w, sly-MIR172c, sly-MIR408, sly-MIR172d, sly-MIR169f, sly-MIR171f, mdm-MIR159d, mdm-MIR159e, mdm-MIR159f, mdm-MIR166j, mdm-MIR395j, mdm-MIR169g, mdm-MIR169h, mdm-MIR169i, mdm-MIR169j, mdm-MIR171p, mdm-MIR395k, mdm-MIR171q, mdm-MIR169k, mdm-MIR169l, mdm-MIR169m, mdm-MIR169n, mdm-MIR172p, mdm-MIR395l, mdm-MIR169o
The tandem duplication of miR395 detected in date palm was consistent with other the tandem duplication events detected in Arabidopsis, tomato, rice, Medicago and poplar [25], [34], [35]. [score:1]
In the miR164, miR172 and miR395 families, all miRNA members were involved in duplication events. [score:1]
miR396, miR166, miR172, miR169 and miR395 were also present at multiple loci in date palm, and these miRNAs had the highest average copy number in the other plant species. [score:1]
As indicated in Table 2, 19/21 replicated miRNAs (90%) were present in two copies, with two exceptions: miR166 (three copies) and miR395 (four copies). [score:1]
Contig PDK_30s6550926, which contained a tandem duplication of miR395, was found in orthologous segments in six plants, with a total of 13 copies. [score:1]
In the miR395 family, three pairs of tandem duplications (MiR395d/e, miR395a/b and miR395f/g) were detected. [score:1]
In addition to analysis of miRNA duplications between paralogous contigs, miRNA-containing tandem repeats were also detected in miR395 and miR396. [score:1]
However, no miR395 members existed in orthologous regions of the five plants. [score:1]
[1 to 20 of 8 sentences]
5
[+] score: 1
Other miRNAs from this paper: mdm-MIR482a, mdm-MIR156a, mdm-MIR156b, mdm-MIR156c, mdm-MIR156d, mdm-MIR156e, mdm-MIR156f, mdm-MIR156g, mdm-MIR156h, mdm-MIR156i, mdm-MIR156j, mdm-MIR156k, mdm-MIR156l, mdm-MIR156m, mdm-MIR156n, mdm-MIR156o, mdm-MIR156p, mdm-MIR156q, mdm-MIR156r, mdm-MIR156s, mdm-MIR156t, mdm-MIR156u, mdm-MIR156v, mdm-MIR156w, mdm-MIR156x, mdm-MIR156y, mdm-MIR156z, mdm-MIR156aa, mdm-MIR156ab, mdm-MIR156ac, mdm-MIR156ad, mdm-MIR156ae, mdm-MIR159a, mdm-MIR159b, mdm-MIR162a, mdm-MIR162b, mdm-MIR164a, mdm-MIR164b, mdm-MIR164c, mdm-MIR164d, mdm-MIR164e, mdm-MIR164f, mdm-MIR167a, mdm-MIR167b, mdm-MIR167c, mdm-MIR167d, mdm-MIR167e, mdm-MIR167f, mdm-MIR167g, mdm-MIR167h, mdm-MIR167i, mdm-MIR167j, mdm-MIR171a, mdm-MIR171b, mdm-MIR171c, mdm-MIR171d, mdm-MIR171e, mdm-MIR171f, mdm-MIR171g, mdm-MIR171h, mdm-MIR171i, mdm-MIR171j, mdm-MIR171k, mdm-MIR171l, mdm-MIR171m, mdm-MIR171n, mdm-MIR172a, mdm-MIR172b, mdm-MIR172c, mdm-MIR172d, mdm-MIR172e, mdm-MIR172f, mdm-MIR172g, mdm-MIR172h, mdm-MIR172i, mdm-MIR172j, mdm-MIR172k, mdm-MIR172l, mdm-MIR172m, mdm-MIR172n, mdm-MIR172o, mdm-MIR319a, mdm-MIR319b, mdm-MIR390a, mdm-MIR390b, mdm-MIR390c, mdm-MIR390d, mdm-MIR390e, mdm-MIR390f, mdm-MIR393a, mdm-MIR393b, mdm-MIR393c, mdm-MIR395a, mdm-MIR395b, mdm-MIR395d, mdm-MIR395e, mdm-MIR395f, mdm-MIR395g, mdm-MIR395h, mdm-MIR395i, mdm-MIR396a, mdm-MIR396b, mdm-MIR396c, mdm-MIR396d, mdm-MIR396e, mdm-MIR396f, mdm-MIR396g, mdm-MIR398a, mdm-MIR398b, mdm-MIR398c, mdm-MIR399a, mdm-MIR399b, mdm-MIR399c, mdm-MIR399d, mdm-MIR399e, mdm-MIR399f, mdm-MIR399g, mdm-MIR399h, mdm-MIR399i, mdm-MIR399j, mdm-MIR408a, mdm-MIR3627a, mdm-MIR3627b, mdm-MIR3627c, mdm-MIR477b, mdm-MIR477a, mdm-MIR482b, mdm-MIR482c, mdm-MIR535a, mdm-MIR535b, mdm-MIR535c, mdm-MIR535d, mdm-MIR408b, mdm-MIR408c, mdm-MIR408d, mdm-MIR2118a, mdm-MIR2118b, mdm-MIR2118c, mdm-MIR482d, mdm-MIR5225c, mdm-MIR159c, mdm-MIR7124a, mdm-MIR7124b, mdm-MIR5225a, mdm-MIR5225b, mdm-MIR319c, mdm-MIR393d, mdm-MIR393e, mdm-MIR393f, mdm-MIR171o, mdm-MIR1511, mdm-MIR3627d, mdm-MIR159d, mdm-MIR159e, mdm-MIR159f, mdm-MIR399k, mdm-MIR319d, mdm-MIR319e, mdm-MIR319f, mdm-MIR319g, mdm-MIR395j, mdm-MIR171p, mdm-MIR393g, mdm-MIR393h, mdm-MIR395k, mdm-MIR319h, mdm-MIR171q, mdm-MIR172p, mdm-MIR395l
Among these families, major malus miRNAs, including miRNA156 (9 members), miRNA171 (14), miRNA172 (14), miRNA167 (10), and miRNA395 (9), were detected (Figure 2A). [score:1]
[1 to 20 of 1 sentences]