sort by

12 publications mentioning dre-mir-181b-3

Open access articles that are associated with the species Danio rerio and mention the gene name mir-181b-3. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 55
Other miRNAs from this paper: hsa-let-7a-1, hsa-let-7a-2, hsa-let-7a-3, hsa-let-7b, hsa-let-7e, hsa-mir-20a, hsa-mir-21, hsa-mir-23a, hsa-mir-24-1, hsa-mir-24-2, hsa-mir-26b, hsa-mir-27a, hsa-mir-29a, hsa-mir-31, hsa-mir-29b-1, hsa-mir-29b-2, hsa-mir-103a-2, hsa-mir-103a-1, hsa-mir-199a-1, hsa-mir-148a, hsa-mir-7-1, hsa-mir-7-2, hsa-mir-7-3, hsa-mir-10b, hsa-mir-181a-2, hsa-mir-181b-1, hsa-mir-181c, hsa-mir-199a-2, hsa-mir-199b, hsa-mir-203a, hsa-mir-204, hsa-mir-212, hsa-mir-181a-1, hsa-mir-221, hsa-mir-23b, hsa-mir-27b, hsa-mir-128-1, hsa-mir-132, hsa-mir-133a-1, hsa-mir-133a-2, hsa-mir-143, hsa-mir-200c, hsa-mir-181b-2, hsa-mir-128-2, hsa-mir-200a, hsa-mir-30e, hsa-mir-148b, hsa-mir-338, hsa-mir-133b, dre-mir-7b, dre-mir-7a-1, dre-mir-7a-2, dre-mir-10b-1, dre-mir-181b-1, dre-mir-181b-2, dre-mir-199-1, dre-mir-199-2, dre-mir-199-3, dre-mir-203a, dre-mir-204-1, dre-mir-181a-1, dre-mir-221, dre-mir-222a, dre-let-7a-1, dre-let-7a-2, dre-let-7a-3, dre-let-7a-4, dre-let-7a-5, dre-let-7a-6, dre-let-7b, dre-let-7e, dre-mir-7a-3, dre-mir-10b-2, dre-mir-20a, dre-mir-21-1, dre-mir-21-2, dre-mir-23a-1, dre-mir-23a-2, dre-mir-23a-3, dre-mir-23b, dre-mir-24-4, dre-mir-24-2, dre-mir-24-3, dre-mir-24-1, dre-mir-26b, dre-mir-27a, dre-mir-27b, dre-mir-29b-1, dre-mir-29b-2, dre-mir-29a, dre-mir-30e-2, dre-mir-101b, dre-mir-103, dre-mir-128-1, dre-mir-128-2, dre-mir-132-1, dre-mir-132-2, dre-mir-133a-2, dre-mir-133a-1, dre-mir-133b, dre-mir-133c, dre-mir-143, dre-mir-148, dre-mir-181c, dre-mir-200a, dre-mir-200c, dre-mir-203b, dre-mir-204-2, dre-mir-338-1, dre-mir-338-2, dre-mir-454b, hsa-mir-181d, dre-mir-212, dre-mir-181a-2, hsa-mir-551a, hsa-mir-551b, dre-mir-31, dre-mir-722, dre-mir-724, dre-mir-725, dre-mir-735, dre-mir-740, hsa-mir-103b-1, hsa-mir-103b-2, dre-mir-2184, hsa-mir-203b, dre-mir-7146, dre-mir-181a-4, dre-mir-181a-3, dre-mir-181a-5, dre-mir-181d, dre-mir-204-3, dre-mir-24b, dre-mir-7133, dre-mir-128-3, dre-mir-7132, dre-mir-338-3
For instance, while miR-181b and miR-7 levels were highly upregulated in injured zebrafish and bichir fins, analysis of regenerating axolotl forelimbs showed expression levels were significantly downregulated. [score:9]
These studies confirmed miR-21, miR-181c and miR-31 were consistently upregulated in all three organisms and miR-181b and miR-7b were upregulated in both zebrafish and bichir (Fig 3). [score:7]
S22 Table Zebrafish Ensembl gene identifiers for 58 genes downregulated in three mo dels with predicted miRNA binding sites for miR-21, miR-181c, miR-181b, miR-31 and miR-7 and members of the network of commonly up- and downregulated genes with functional interactions to 11 blastema -associated genes. [score:7]
These filtering criteria identified 136 downregulated genes with predicted binding sites in the 3’-UTRs for any of the 5 common upregulated miRNAs (miR-21, miR-31, miR-181b, miR-181c and miR-7b) (S21 Table). [score:7]
Morphological and histological studies of miR-21, miR-31 and/or miR-181 inhibition combined with identification of target genes would demonstrate their roles in blastema formation. [score:5]
S21 Table Zebrafish Ensembl gene identifiers for 136 genes downregulated in three mo dels with predicted miRNA binding sites for miR-21, miR-181c, miR-181b, miR-31 or miR-7 in all three mo dels. [score:4]
Interestingly, erb-b2 receptor tyrosine kinase 2 (erbb2) was the only blastema -associated transcript predicted to be targeted by one of the common regulated miRNAs, miR-181b and miR-181c. [score:4]
Within this subset of differentially regulated zebrafish miRNAs, we identified 10 miRNAs: miR-21, miR-181c, miR-181b, miR-31, miR-7b, miR-2184, miR-24, miR-133a, miR-338 and miR-204, that showed conserved expression changes with both bichir and axolotl regenerating samples (Table 1). [score:4]
STRING interactions with 11 common blastema -associated genes, miR-21, miR-31, miR-181, and 50 additional common differentially expressed genes with common predicted miRNAs binding sites. [score:3]
Next, we established a gene network for common miRNA target genes for miR-21, miR-31 and miR-181. [score:3]
Although zebrafish miRNAs have been examined in numerous studies [25, 27, 41– 43], our analysis revealed novel paralogs of 18 miRNAs that do not currently have zebrafish records in miRBase (version 21), including miR-181a, miR-20a, miR-23b, miR-24, miR-29a, miR-103, miR-128, miR-148, miR-181b, miR-199, miR-204, miR-212, miR-221, miR-338, miR-724, miR-2184, let-7b and let-7e. [score:1]
In addition to rgs5, both bcl2l13 and chka had predicted binding sites for 4 miRNAs (miR-21, miR-181b, miR-181c and miR-7b). [score:1]
[1 to 20 of 12 sentences]
2
[+] score: 35
Other miRNAs from this paper: dre-mir-7b, dre-mir-7a-1, dre-mir-7a-2, dre-mir-34a, dre-mir-181b-1, dre-mir-181b-2, dre-mir-182, dre-mir-183, dre-mir-181a-1, dre-mir-219-1, dre-mir-219-2, dre-mir-221, dre-mir-222a, dre-mir-430a-1, dre-mir-430b-1, dre-mir-430c-1, dre-let-7a-1, dre-let-7a-2, dre-let-7a-3, dre-let-7a-4, dre-let-7a-5, dre-let-7a-6, dre-let-7b, dre-let-7c-1, dre-let-7c-2, dre-let-7d-1, dre-let-7d-2, dre-let-7e, dre-let-7f, dre-let-7g-1, dre-let-7g-2, dre-let-7h, dre-let-7i, dre-mir-7a-3, dre-mir-9-1, dre-mir-9-2, dre-mir-9-4, dre-mir-9-3, dre-mir-9-5, dre-mir-9-6, dre-mir-9-7, dre-mir-92b, dre-mir-96, dre-mir-100-1, dre-mir-100-2, dre-mir-124-1, dre-mir-124-2, dre-mir-124-3, dre-mir-124-4, dre-mir-124-5, dre-mir-124-6, dre-mir-125b-1, dre-mir-125b-2, dre-mir-125b-3, dre-mir-128-1, dre-mir-128-2, dre-mir-132-1, dre-mir-132-2, dre-mir-135c-1, dre-mir-135c-2, dre-mir-137-1, dre-mir-137-2, dre-mir-138-1, dre-mir-153a, dre-mir-181c, dre-mir-200a, dre-mir-218a-1, dre-mir-218a-2, dre-mir-219-3, dre-mir-375-1, dre-mir-375-2, dre-mir-454a, dre-mir-430c-2, dre-mir-430c-3, dre-mir-430c-4, dre-mir-430c-5, dre-mir-430c-6, dre-mir-430c-7, dre-mir-430c-8, dre-mir-430c-9, dre-mir-430c-10, dre-mir-430c-11, dre-mir-430c-12, dre-mir-430c-13, dre-mir-430c-14, dre-mir-430c-15, dre-mir-430c-16, dre-mir-430c-17, dre-mir-430c-18, dre-mir-430a-2, dre-mir-430a-3, dre-mir-430a-4, dre-mir-430a-5, dre-mir-430a-6, dre-mir-430a-7, dre-mir-430a-8, dre-mir-430a-9, dre-mir-430a-10, dre-mir-430a-11, dre-mir-430a-12, dre-mir-430a-13, dre-mir-430a-14, dre-mir-430a-15, dre-mir-430a-16, dre-mir-430a-17, dre-mir-430a-18, dre-mir-430i-1, dre-mir-430i-2, dre-mir-430i-3, dre-mir-430b-2, dre-mir-430b-3, dre-mir-430b-4, dre-mir-430b-6, dre-mir-430b-7, dre-mir-430b-8, dre-mir-430b-9, dre-mir-430b-10, dre-mir-430b-11, dre-mir-430b-12, dre-mir-430b-13, dre-mir-430b-14, dre-mir-430b-15, dre-mir-430b-16, dre-mir-430b-17, dre-mir-430b-18, dre-mir-430b-5, dre-mir-430b-19, dre-mir-430b-20, dre-let-7j, dre-mir-181a-2, dre-mir-34b, dre-mir-34c, dre-mir-222b, dre-mir-138-2, dre-mir-181a-4, dre-mir-181a-3, dre-mir-181a-5, dre-mir-181d, dre-mir-128-3
miR-181a and miR-181b show similar expression in the larval brain, and this is largely conserved to adult stages (although there is down-regulation in some areas such as thalamus and tegmentum; 13 and 14, and Tables C and H in7). [score:6]
This pattern is highly reminiscent of expression of the huC gene (Figure 2i), which encodes an RNA binding protein expressed in nearly all CNS neurons but the same subsets of retinal cells as miR-181a and miR-181b. [score:5]
Additional data file 14 is a figure showing miR-181b expression in the zebrafish brain. [score:3]
The constitutive expression of miRNAs such as miR-124, miR-181, miR-222 and others in mature neurons is consistent with an initial role in the clearance of mRNAs from the neuronal precursor stage but later they may fulfill a different role in the surveillance of fluctuations in aberrant transcription from notionally 'silenced' loci. [score:3]
Figure 4Conserved and divergent expression of miR-181a and miR-181b. [score:3]
miR-181b expression in the zebrafish brain. [score:3]
miR-181a and miR-181b belong to the same family but differ in three nucleotides outside the seed region, suggesting that LNA probes can discriminate between their transcript expression profiles (Tables K and L in8, and9). [score:3]
Click here for file 4 miR-181b expression in the zebrafish brain. [score:3]
Despite overall conservation, we noticed differences in expression of miR-181a and miR-181b that were not obvious at larval stages. [score:3]
We compared the adult brain expression of miRNAs belonging to the same family, such as miR-181a and miR-181b, or cluster, such as miR-221 and miR-222, that differ in three and four nucleotides, respectively; LNA probes should, therefore, discriminate each of them. [score:2]
A cluster on chromosome 8 contains both miR-181a and miR-181b but there is an additional copy of miR-181a on chromosome 22 and of miR-181b on chromosome 20 [19, 44]. [score:1]
[1 to 20 of 11 sentences]
3
[+] score: 20
Cichocki et al. demonstrated that nemo-like kinase (NLK), an inhibitor of Notch signaling, is a target of miR-181 in natural killer cell (NK) cells, and knockdown of NLK mirrors the developmental effect of miR-181 overexpression. [score:9]
Therefore, they concluded that miR-181 can promote NK cell development, at least in part, through the suppression of NLK [29]. [score:4]
Studies on these miRNAs in mammals indicate that miR-181 is involved in multiple roles in immune regulation and disease. [score:4]
The most highly expressed miRNA family in channel catfish was ipu-miR-181 (1,781,434 reads). [score:3]
[1 to 20 of 4 sentences]
4
[+] score: 9
The targets for miRNAs reported in the following references were tested: a Abramov et al. [51], b: Juanchich et al. [52], c: Yao et al. [53], d: Wei et al. [54], b* whereas in [52] the minor form of miR-181 was reported, here the targets for the major form of miR-181 were tested, because in TargetScanFish 6.2 no targets for miR-181* are available. [score:9]
[1 to 20 of 1 sentences]
5
[+] score: 7
Other miRNAs from this paper: hsa-let-7a-1, hsa-let-7a-2, hsa-let-7a-3, hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f-1, hsa-let-7f-2, hsa-mir-15a, hsa-mir-17, hsa-mir-21, hsa-mir-29a, hsa-mir-96, mmu-let-7g, mmu-let-7i, mmu-mir-124-3, mmu-mir-140, mmu-mir-181a-2, mmu-mir-182, mmu-mir-183, mmu-mir-194-1, mmu-mir-200b, hsa-mir-34a, hsa-mir-181a-2, hsa-mir-181b-1, hsa-mir-181c, hsa-mir-182, hsa-mir-183, hsa-mir-181a-1, hsa-mir-200b, mmu-mir-34c, mmu-mir-34b, mmu-let-7d, hsa-let-7g, hsa-let-7i, hsa-mir-124-1, hsa-mir-124-2, hsa-mir-124-3, hsa-mir-140, hsa-mir-194-1, mmu-let-7a-1, mmu-let-7a-2, mmu-let-7b, mmu-let-7c-1, mmu-let-7c-2, mmu-let-7e, mmu-let-7f-1, mmu-let-7f-2, mmu-mir-15a, mmu-mir-21a, mmu-mir-29a, mmu-mir-96, mmu-mir-34a, mmu-mir-135b, hsa-mir-200c, hsa-mir-181b-2, mmu-mir-17, mmu-mir-200c, mmu-mir-181a-1, mmu-mir-124-1, mmu-mir-124-2, mmu-mir-181b-1, mmu-mir-181c, hsa-mir-194-2, mmu-mir-194-2, hsa-mir-34b, hsa-mir-34c, hsa-mir-376c, hsa-mir-376a-1, mmu-mir-376a, hsa-mir-135b, mmu-mir-181b-2, mmu-mir-376b, dre-mir-34a, dre-mir-181b-1, dre-mir-181b-2, dre-mir-182, dre-mir-183, dre-mir-181a-1, dre-let-7a-1, dre-let-7a-2, dre-let-7a-3, dre-let-7a-4, dre-let-7a-5, dre-let-7a-6, dre-let-7b, dre-let-7c-1, dre-let-7c-2, dre-let-7d-1, dre-let-7d-2, dre-let-7e, dre-let-7f, dre-let-7g-1, dre-let-7g-2, dre-let-7h, dre-let-7i, dre-mir-15a-1, dre-mir-15a-2, dre-mir-17a-1, dre-mir-17a-2, dre-mir-21-1, dre-mir-21-2, dre-mir-29a, dre-mir-96, dre-mir-124-1, dre-mir-124-2, dre-mir-124-3, dre-mir-124-4, dre-mir-124-5, dre-mir-124-6, dre-mir-140, dre-mir-181c, dre-mir-194a, dre-mir-194b, dre-mir-200b, dre-mir-200c, hsa-mir-376b, hsa-mir-181d, hsa-mir-507, dre-let-7j, dre-mir-135b, dre-mir-181a-2, hsa-mir-376a-2, mmu-mir-376c, dre-mir-34b, dre-mir-34c, mmu-mir-181d, mmu-mir-21b, mmu-let-7j, mmu-mir-21c, mmu-let-7k, dre-mir-181a-4, dre-mir-181a-3, dre-mir-181a-5, dre-mir-181d, mmu-mir-124b
The data verified that two miRNAs, miR-29a and -34a, which have been implicated in apoptotic pathways, are up-regulated and the two miRNAs, miR-181 and -183, which have been shown to have roles in proliferation and differentiation, are down-regulated While it is believed that a major cause of ARHL is the death of hair cells, other age-related changes in the central auditory pathways cannot be ruled out. [score:7]
[1 to 20 of 1 sentences]
6
[+] score: 5
Overexpression of miR-181a, miR-181b, miR-221, miR-222 and miR-451 (10 µM) resulted in no observable phenotype in zebrafish embryos at 2 dpf. [score:3]
The miRNAs that did not produce any visible vascular phenotypes in our screen include miR-181a, miR-181b, miR-221, miR-222 and miR-451. [score:1]
Q,R,S and T,U,V - Zebrafish embryos injected with miR-181a and miR-181b respectively display no visible phenotype. [score:1]
[1 to 20 of 3 sentences]
7
[+] score: 5
Three miRNA families, miR-27, miR-30 and miR-181, were analyzed to determine gain and loss of miRNA family members and changes in their sequences (miRNA sequences were downloaded from miRBase). [score:1]
The situation of gain and loss of family members was observed for miR-181 family as well, suggesting that similar events could be found in other miRNA families. [score:1]
Alignments were carried out within miR-27, miR-30 and miR-181 family of zebrafish and human, respectively (Figure 7). [score:1]
miR-27, miR-30 and miR-181 family members in different lineages. [score:1]
Sequence comparison of miR-27, miR-30 and miR-181 family members in zebrafish and human. [score:1]
[1 to 20 of 5 sentences]
8
[+] score: 3
Another miRNA, miR-181b, decreased its expression levels under the same conditions. [score:3]
[1 to 20 of 1 sentences]
9
[+] score: 3
For example, miR-33a inhibition affects atherosclerosis progression [39]; and miR-181 [38] and miR-22 [42] showed ability to counteract hypertension. [score:3]
[1 to 20 of 1 sentences]
10
[+] score: 3
miR-181b-5p, which inhibits arsenic -induced endothelial cell migration/tube formation and NF-κB -mediated EC activation and inflammation [37, 38], is also more abundant in HUVEC (Figure  1G). [score:3]
[1 to 20 of 1 sentences]
11
[+] score: 2
miR-181 can directly impair porcine reproductive and respiratory syndrome virus replication via specifically binding to a conserved region in the downstream of open reading frame 4 of the viral genomic RNA [31]. [score:2]
[1 to 20 of 1 sentences]
12
[+] score: 1
The hematopoietic enriched miR-181 was the first to be shown to shift progenitor cell differentiation into the specific lineage where it is abundant—B cells [79]. [score:1]
[1 to 20 of 1 sentences]