sort by

17 publications mentioning sly-MIR169a

Open access articles that are associated with the species Solanum lycopersicum and mention the gene name MIR169a. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 52
Further, miR319(iv) was downregulated (P < 0.05) at stage 2. The only miRNA, miR169(v), was upregulated (P < 0.05) at stages 1, 2 and 5 with the highest expression at stage 1 (Fig 3A). [score:9]
Similarly, during soybean-cyst nematode interaction, the expression of miR169 was upregulated during susceptible response and downregulated during resistance response [42]. [score:9]
In recent study, a different member of miR169 family was shown to be downregulated and NF transcription factor gene was upregulated at early stage of infection during Arabidopsis-RKN interaction [17]. [score:7]
The highest expression was observed during stage 1 followed by stage 2. Previously, however, another member of miR169 was upregulated only at 7dpi root during Arabidopsis-cyst nematode infection [18]. [score:6]
Known targets of miR169 are NF transcription factors that regulate various abiotic stress responsive genes [57]. [score:4]
In our study, miR169(v) was significantly upregulated at early stages (stage 1 and 2) and late stage (stage 5) based on qRT-PCR. [score:4]
Our study also showed that miR169(v) was downregulated at stage 2 during resistance response in contrast to susceptible response. [score:4]
For example, conserved miR396(i) and miR169(v) were downregulated (P < 0.05) at stage 2 (Fig 3D). [score:4]
In contrast, a low digital expression was observed for miR1446, miR167, miR169, miR171, miR393, miR394, miR399, miR408, miR5304, miR9473 and miR9479 families (total TPM value < 100). [score:3]
Our results together with previous reports suggest that members of miR169 family are likely to play a role during nematode pathogenesis. [score:1]
Moreover, this study has identified a few novel and conserved miRNAs of both tomato [e. g., Sly_miRNA996 and miR169(v)] and RKN (e. g., miR-58_1 and miR-100_3) and their targets that can be further functionally characterized to get better insights into plant-nematode interaction. [score:1]
[1 to 20 of 11 sentences]
2
[+] score: 35
The expression profiles of the B. cinerea-responsive miRNA targetsCleaveLand pipeline was performed to predict the targets of the seven known B. cinerea-responsive miRNAs (miR159, miR160, miR169, miR319, miR394, miR1919, and miR5300), thereby detecting the expression profiles of their target genes. [score:11]
Seven families, miR159, miR169, miR319, miR394, miR1919, miR1446, and miR5300, were upregulated and only 1 family, miR2111, was downregulated in B. cinerea-infected leaves. [score:7]
CleaveLand pipeline was performed to predict the targets of the seven known B. cinerea-responsive miRNAs (miR159, miR160, miR169, miR319, miR394, miR1919, and miR5300), thereby detecting the expression profiles of their target genes. [score:7]
Consistently with sRNA sequencing data, qRT-PCR results showed that 6 miRNAs, miR159, miR169, miR319, miR394, miR1919, and miRn1, were upregulated at each examined time point after B. cinerea inoculation. [score:4]
We examined the expression patterns by subjecting 9 B. cinerea-responsive miRNAs, including 8 known miRNAs (miR156, miR159, miR160, miR169, miR319, miR394, miR1919, and miR5300) and 1 novel miRNA (miRn1), to quantitative reverse-transcription PCR (qRT-PCR) (Figure  5). [score:3]
Moreover, no CDS was predicted as a target of the remaining three miRNAs, namely miR169, miR1919, and miR5300. [score:3]
[1 to 20 of 6 sentences]
3
[+] score: 33
Moreover, overexpression of sly‐miR169c caused significantly down‐regulation of tomato target genes and induced the increased drought tolerance of tomato (Zhang et al., 2011), whereas overexpression of miR169a led to drought sensitivity in Arabidopsis plants (Li et al., 2008b). [score:8]
Additionally, sly‐miR169 expression was increased in tomato by drought treatment, while three SlNFYA (1/2/3) genes were down‐regulated (Zhang et al., 2011). [score:4]
Similarly, jasmonic acid–amido synthetase JAR1, jasmonate ZIM domain (JAZ) and MYC2 genes were enriched to alpha‐Linolenic acid metabolism associated with jasmonic acid synthesis, and these genes were targeted by sly‐miR162a‐3p, sly‐miR169a‐5p, sly‐miR172a, sly‐miR827‐5p, sly‐miR5083, sly‐miR5298a, sly‐miR5658, sly‐miR6476a and sly‐miR8576 (Figure  10). [score:3]
These targets were cleaved by sly‐miR156, sly‐miR164, sly‐miR166, sly‐miR169, sly‐miR171, sly‐miR395 and sly‐mir9477 (Table S4). [score:3]
In our results, sly‐miR169a‐5p expression was decreased in all tissues with drought (Figure  4a, b, Table S2). [score:3]
For example, the expression of sly‐miR169a‐5p was decreased in all tissues, even the decrease was higher in root tissues. [score:3]
miR169 targets Jasmonate ZIM Domain (JAZ) and nuclear transcription factor Y subunit A‐3 (NFYA‐3) in tomato fruits (Karlova et al., 2013) and this is further validated in our study (Table S3). [score:3]
In same signalling cascade, JAZ receptor was targeted by sly‐miR169a‐5p (Figures  10 and 11b). [score:3]
Additionally, plant hormone signal transduction pathway genes were differentially regulated by miR169, miR172, miR393, miR5641, miR5658 and miR7997 in both tissues of both sensitive and tolerant genotypes. [score:2]
Likewise, sly‐miR169, sly‐miR172, sly‐miR393, sly‐miR5641, sly‐miR5658 and sly‐miR7997 function in plant hormone signal transduction pathway and related proteins (Figures  10 and 11b). [score:1]
[1 to 20 of 10 sentences]
4
[+] score: 32
miRNA Fold (↑ or ↓) Target protein class Function References miR160 ↓, 2X Auxin response factors Hormone signaling and plant development[50] miR162 ↑, 2X Dicer-like (DCL) protein Plant development[39] miR168 ↑, 2X ARGONAUTE (AGO) protein Plant development[40, 51] miR169 ↓, 2X CBF HAP2-like factors Abiotic stress responses[52] miR171 ↓, 2X Scarecrow- like (GRAS domain) TFs Flowering time[11] miR172 ↑, ~4X APETALA-2 (AP2) like TFs Floral identity and phase transition[13, 17] miR319 ↑, ~4X TCP, bHLH TF Leaf patterning[19] miR391 ↓, 3X Not known Not known miR396 ↑, 2X GRL TFs, Rhodanase like proteins Defense responses[23] miR397 ↑, 1.5X Laccases, b -6 tubulin Fungal infection[7, 23] miR398 ↑, 3X Copper superoxide dismutases (CSD1/2) Abiotic stress[43] miR408 ↑, 1.5X Plantacyanin Stress responses[23] miR447 ↑, 2.5X 2-Phosphoglycerate kinase Metabolic pathway[7] The relative expression values of the individual miRNAs as revealed from the array analysis have been plotted as a histogram (see Additional file 1; Fig. S 2 a, b). [score:8]
miRNA Fold (↑ or ↓) Target protein class Function References miR160 ↓, 2X Auxin response factors Hormone signaling and plant development[50] miR162 ↑, 2X Dicer-like (DCL) protein Plant development[39] miR168 ↑, 2X ARGONAUTE (AGO) protein Plant development[40, 51] miR169 ↓, 2X CBF HAP2-like factors Abiotic stress responses[52] miR171 ↓, 2X Scarecrow- like (GRAS domain) TFs Flowering time[11] miR172 ↑, ~4X APETALA-2 (AP2) like TFs Floral identity and phase transition[13, 17] miR319 ↑, ~4X TCP, bHLH TF Leaf patterning[19] miR391 ↓, 3X Not known Not known miR396 ↑, 2X GRL TFs, Rhodanase like proteins Defense responses[23] miR397 ↑, 1.5X Laccases, b -6 tubulin Fungal infection[7, 23] miR398 ↑, 3X Copper superoxide dismutases (CSD1/2) Abiotic stress[43] miR408 ↑, 1.5X Plantacyanin Stress responses[23] miR447 ↑, 2.5X 2-Phosphoglycerate kinase Metabolic pathway[7]The relative expression values of the individual miRNAs as revealed from the array analysis have been plotted as a histogram (see Additional file 1; Fig. S 2 a, b). [score:8]
MiR169 (slightly down-regulated in ToLCNDV infected leaves) targeted CBF transcript did not show significant changes in the expression level. [score:7]
Microarray and northern hybridization results show that most of the deregulated miRNAs were induced and only few (miR160, miR164, miR169, miR171 and miR391) were down-regulated following ToLCNDV infection. [score:5]
We chose SCL6- like TF, NAM-like TF and CBF TF that are targets of miR171, miR164 and miR169, respectively. [score:3]
, miR160, miR169, miR170 and miR391 following ToLCNDV infection (Figure 2). [score:1]
[1 to 20 of 6 sentences]
5
[+] score: 7
For example, exogenous MeJA down-regulates miR156, miR168, miR169, miR172, miR172, miR396, miR480, and miR1310 and up-regulates miR164 and miR390 in Chinese yew (Qiu et al., 2009). [score:7]
[1 to 20 of 1 sentences]
6
[+] score: 6
It was reported that NF-YA genes are the target of the microRNA169 [52, 58], but it is not known whether miR169 regulates their expression at onset of tomato fruit ripening. [score:6]
[1 to 20 of 1 sentences]
7
[+] score: 5
Other miRNAs from this paper: sly-MIR169b, sly-MIR169c, sly-MIR169d, sly-MIR169e, sly-MIR169f
Expression of NF-YA transcripts is stress-inducible and is inhibited in Arabidopsis in control conditions by miR169, a microRNA present in several isoforms (Li et al., 2008; Leyva-González et al., 2012). [score:5]
[1 to 20 of 1 sentences]
8
[+] score: 5
Among them, the expression of 40 miRNAs in Micro-Tom × WVa700 were higher than those of WVa700 × Micro-Tom, such as conserved miRNAs (miR156f-3p, miR171a-3p, miR535a and miR169a) and non-conserved miR5081 that showed similar expression levels between Micro-Tom and WVa700. [score:5]
[1 to 20 of 1 sentences]
9
[+] score: 5
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR396e, mtr-MIR166a, mtr-MIR169a, mtr-MIR399b, mtr-MIR399d, mtr-MIR393a, mtr-MIR399c, mtr-MIR399a, mtr-MIR399e, mtr-MIR156a, mtr-MIR171a, mtr-MIR156b, mtr-MIR167a, mtr-MIR166b, mtr-MIR169c, mtr-MIR169d, mtr-MIR169e, mtr-MIR171b, mtr-MIR166c, mtr-MIR166d, mtr-MIR169f, mtr-MIR156c, mtr-MIR156d, mtr-MIR399f, mtr-MIR399g, mtr-MIR399h, mtr-MIR399i, mtr-MIR399j, mtr-MIR399k, mtr-MIR166e, mtr-MIR156e, mtr-MIR171c, mtr-MIR398a, mtr-MIR172a, mtr-MIR393b, mtr-MIR398b, mtr-MIR168a, mtr-MIR169g, mtr-MIR156f, mtr-MIR399l, mtr-MIR156g, mtr-MIR399m, mtr-MIR399n, mtr-MIR399o, mtr-MIR398c, mtr-MIR156h, mtr-MIR166f, mtr-MIR166g, mtr-MIR171d, mtr-MIR171e, mtr-MIR396a, mtr-MIR396b, mtr-MIR169h, mtr-MIR169b, mtr-MIR156i, mtr-MIR171f, mtr-MIR399p, osa-MIR169r, sly-MIR166a, sly-MIR166b, sly-MIR167a, sly-MIR169b, sly-MIR169c, sly-MIR169d, sly-MIR171a, sly-MIR171b, sly-MIR171c, sly-MIR171d, sly-MIR397, sly-MIR156a, sly-MIR156b, sly-MIR156c, sly-MIR172a, sly-MIR172b, sly-MIR399, osa-MIR827, osa-MIR396f, mtr-MIR2118, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, mtr-MIR169k, mtr-MIR169j, mtr-MIR399q, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR5072, mtr-MIR4414a, mtr-MIR4414b, mtr-MIR482, mtr-MIR172b, mtr-MIR172c, mtr-MIR171h, mtr-MIR168b, mtr-MIR399r, mtr-MIR156j, sly-MIR482e, sly-MIR482a, mtr-MIR167b, mtr-MIR168c, mtr-MIR408, mtr-MIR396c, mtr-MIR171g, stu-MIR6024, sly-MIR6024, stu-MIR482c, stu-MIR482b, stu-MIR482a, stu-MIR482d, stu-MIR482e, sly-MIR482b, sly-MIR482c, stu-MIR6025, stu-MIR6026, sly-MIR6026, sly-MIR168a, sly-MIR168b, mtr-MIR169i, mtr-MIR172d, mtr-MIR397, mtr-MIR169l, mtr-MIR399s, mtr-MIR399t, stu-MIR7980a, stu-MIR7983, stu-MIR8007a, stu-MIR8007b, stu-MIR7980b, stu-MIR399a, stu-MIR399b, stu-MIR399c, stu-MIR399d, stu-MIR399e, stu-MIR399f, stu-MIR399g, stu-MIR399h, stu-MIR3627, stu-MIR171b, stu-MIR166a, stu-MIR166b, stu-MIR166c, stu-MIR166d, stu-MIR171a, stu-MIR171c, stu-MIR399i, stu-MIR827, stu-MIR172b, stu-MIR172c, stu-MIR172a, stu-MIR172d, stu-MIR172e, stu-MIR156a, stu-MIR156b, stu-MIR156c, stu-MIR156d, stu-MIR171d, stu-MIR167c, stu-MIR167b, stu-MIR167a, stu-MIR167d, stu-MIR399j, stu-MIR399k, stu-MIR399l, stu-MIR399m, stu-MIR399n, stu-MIR399o, stu-MIR393, stu-MIR398a, stu-MIR398b, stu-MIR396, stu-MIR408a, stu-MIR408b, stu-MIR397, stu-MIR171e, stu-MIR156e, stu-MIR156f, stu-MIR156g, stu-MIR156h, stu-MIR156i, stu-MIR156j, stu-MIR156k, stu-MIR169a, stu-MIR169b, stu-MIR169c, stu-MIR169d, stu-MIR169e, stu-MIR169f, stu-MIR169g, stu-MIR169h, sly-MIR403, sly-MIR166c, sly-MIR156d, sly-MIR156e, sly-MIR396a, sly-MIR167b, sly-MIR482d, sly-MIR169e, sly-MIR396b, sly-MIR171e, sly-MIR172c, sly-MIR408, sly-MIR172d, sly-MIR827, sly-MIR393, sly-MIR398a, sly-MIR399b, sly-MIR6025, sly-MIR169f, sly-MIR171f
MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. [score:3]
For example, miR166 and miR169 regulate nodule organogenesis in Medicago trunctula (Combier et al., 2006; Boualem et al., 2008). [score:2]
[1 to 20 of 2 sentences]
10
[+] score: 4
For instance, the expression of miRNA156, miRNA169, miRNA172 and miRNA319 was significantly changed upon drought stress in tomato, and these miRNAs were also induced by drought stress in Arabidopsis, rice and wheat [9, 29, 54, 55]. [score:3]
A few of them have been further verified by transgenic approach, such as DREB, TAS14, USP and miRNA169 [44– 47]. [score:1]
[1 to 20 of 2 sentences]
11
[+] score: 4
Additionally, miR169 targets the nuclear transcription factor Y (NFYA), which plays an important role in drought responses. [score:3]
Exposure to ABA or abiotic stresses greatly induces A. thaliana NFYA5 transcripts but leads to decreased levels of miR169 [21, 22]. [score:1]
[1 to 20 of 2 sentences]
12
[+] score: 4
Zhang X Zou Z Gong P Over -expression of microRNA169 confers enhanced drought tolerance to tomatoBiotechnol. [score:2]
Various letters indicate significant difference among samples, and letters shared in common between or among the groups indicate no significant difference (P < 0.05) To gain insight into the molecular mechanisms responsible for the late blight resistance, we previously used high-throughput sequencing to identify P. infestans -induced miRNAs in tomato, including miR169, miR398, miR482, miR6024, miR6026, and miR6027 25, 47, 48. [score:1]
A number of plant miRNAs, such as miR159, miR160, miR166, miR169, miR172, and miR396, are involved in the response to drought, water deficit, and salt stresses 23, 24. [score:1]
[1 to 20 of 3 sentences]
13
[+] score: 3
Additionally, some miRNAs, such as miR169, 172 and 393, increased under the chilling stress in Arabidopsis [22] and Brachypodium [24], but in this study, no obvious change in expression was detected. [score:3]
[1 to 20 of 1 sentences]
14
[+] score: 3
In addition, lncRNA3294 was the target of sly-miR169 that is engaged in drought tolerance of tomato (Zhang et al., 2011). [score:3]
[1 to 20 of 1 sentences]
15
[+] score: 1
For example, miR160, miR168, and miR169 increased under 40 °C for 1 h in leaves of wheat seedlings, whereas pto-miR160, pto-miR168, pto-miR169a-b, and pto-miR169n-t showed a significant reduction in P. tomentosa subjected to 37 °C for 8 h [25, 27]. [score:1]
[1 to 20 of 1 sentences]
16
[+] score: 1
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, osa-MIR396e, gma-MIR156d, gma-MIR156e, gma-MIR156c, gma-MIR159a, gma-MIR160a, gma-MIR166a, gma-MIR166b, gma-MIR167a, gma-MIR167b, gma-MIR172a, gma-MIR172b, gma-MIR156a, gma-MIR396a, gma-MIR396b, gma-MIR156b, gma-MIR169a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR169r, gma-MIR159b, gma-MIR159c, gma-MIR162a, gma-MIR164a, gma-MIR167c, gma-MIR169b, gma-MIR169c, gma-MIR171a, gma-MIR171b, gma-MIR482a, sly-MIR160a, sly-MIR166a, sly-MIR166b, sly-MIR167a, sly-MIR169b, sly-MIR169c, sly-MIR169d, sly-MIR171a, sly-MIR171b, sly-MIR171c, sly-MIR171d, sly-MIR395a, sly-MIR395b, sly-MIR156a, sly-MIR156b, sly-MIR156c, sly-MIR159, sly-MIR162, sly-MIR172a, sly-MIR172b, osa-MIR396f, gma-MIR167d, gma-MIR396c, mdm-MIR482a, gma-MIR167e, gma-MIR167f, gma-MIR172c, gma-MIR172d, gma-MIR172e, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, gma-MIR396d, gma-MIR482b, gma-MIR167g, gma-MIR156f, gma-MIR169d, gma-MIR172f, gma-MIR171c, gma-MIR169e, gma-MIR394b, gma-MIR156g, gma-MIR159d, gma-MIR394a, gma-MIR396e, gma-MIR156h, gma-MIR156i, gma-MIR160b, gma-MIR160c, gma-MIR160d, gma-MIR160e, gma-MIR162b, gma-MIR164b, gma-MIR164c, gma-MIR164d, gma-MIR166c, gma-MIR166d, gma-MIR166e, gma-MIR166f, gma-MIR166g, gma-MIR166h, gma-MIR169f, gma-MIR169g, gma-MIR171d, gma-MIR171e, gma-MIR171f, gma-MIR171g, gma-MIR394c, gma-MIR408d, gma-MIR482c, gma-MIR171h, gma-MIR171i, gma-MIR169h, gma-MIR167h, gma-MIR169i, gma-MIR396f, gma-MIR396g, gma-MIR167i, sly-MIR482e, sly-MIR482a, gma-MIR171j, gma-MIR395a, gma-MIR395b, gma-MIR395c, gma-MIR408a, gma-MIR408b, gma-MIR408c, gma-MIR156j, gma-MIR156k, gma-MIR156l, gma-MIR156m, gma-MIR156n, gma-MIR156o, gma-MIR159e, gma-MIR159f, gma-MIR162c, gma-MIR166i, gma-MIR166j, gma-MIR169j, gma-MIR169k, gma-MIR169l, gma-MIR169m, gma-MIR169n, gma-MIR171k, gma-MIR172g, gma-MIR172h, gma-MIR172i, gma-MIR172j, gma-MIR396h, gma-MIR396i, gma-MIR482d, gma-MIR167j, gma-MIR171l, gma-MIR156p, gma-MIR171m, gma-MIR172k, gma-MIR171n, gma-MIR156q, gma-MIR171o, gma-MIR172l, gma-MIR169o, gma-MIR171p, gma-MIR394d, gma-MIR169p, gma-MIR156r, gma-MIR396j, gma-MIR171q, gma-MIR156s, gma-MIR169r, gma-MIR169s, gma-MIR396k, gma-MIR166k, gma-MIR156t, gma-MIR482e, gma-MIR171r, gma-MIR394e, gma-MIR169t, gma-MIR171s, gma-MIR166l, gma-MIR171t, gma-MIR394f, gma-MIR171u, gma-MIR395d, gma-MIR395e, gma-MIR395f, gma-MIR395g, gma-MIR166m, gma-MIR169u, sly-MIR482b, sly-MIR482c, gma-MIR156u, gma-MIR156v, gma-MIR156w, gma-MIR156x, gma-MIR156y, gma-MIR156z, gma-MIR156aa, gma-MIR156ab, gma-MIR160f, gma-MIR164e, gma-MIR164f, gma-MIR164g, gma-MIR164h, gma-MIR164i, gma-MIR164j, gma-MIR164k, gma-MIR166n, gma-MIR166o, gma-MIR166p, gma-MIR166q, gma-MIR166r, gma-MIR166s, gma-MIR166t, gma-MIR166u, gma-MIR169v, gma-MIR394g, gma-MIR395h, gma-MIR395i, gma-MIR395j, gma-MIR395k, gma-MIR395l, gma-MIR395m, mdm-MIR156a, mdm-MIR156b, mdm-MIR156c, mdm-MIR156d, mdm-MIR156e, mdm-MIR156f, mdm-MIR156g, mdm-MIR156h, mdm-MIR156i, mdm-MIR156j, mdm-MIR156k, mdm-MIR156l, mdm-MIR156m, mdm-MIR156n, mdm-MIR156o, mdm-MIR156p, mdm-MIR156q, mdm-MIR156r, mdm-MIR156s, mdm-MIR156t, mdm-MIR156u, mdm-MIR156v, mdm-MIR156w, mdm-MIR156x, mdm-MIR156y, mdm-MIR156z, mdm-MIR156aa, mdm-MIR156ab, mdm-MIR156ac, mdm-MIR156ad, mdm-MIR156ae, mdm-MIR159a, mdm-MIR159b, mdm-MIR160a, mdm-MIR160b, mdm-MIR160c, mdm-MIR160d, mdm-MIR160e, mdm-MIR162a, mdm-MIR162b, mdm-MIR164a, mdm-MIR164b, mdm-MIR164c, mdm-MIR164d, mdm-MIR164e, mdm-MIR164f, mdm-MIR166a, mdm-MIR166b, mdm-MIR166c, mdm-MIR166d, mdm-MIR166e, mdm-MIR166f, mdm-MIR166g, mdm-MIR166h, mdm-MIR166i, mdm-MIR167a, mdm-MIR167b, mdm-MIR167c, mdm-MIR167d, mdm-MIR167e, mdm-MIR167f, mdm-MIR167g, mdm-MIR167h, mdm-MIR167i, mdm-MIR167j, mdm-MIR169a, mdm-MIR169b, mdm-MIR169c, mdm-MIR169d, mdm-MIR171a, mdm-MIR171b, mdm-MIR171c, mdm-MIR171d, mdm-MIR171e, mdm-MIR171f, mdm-MIR171g, mdm-MIR171h, mdm-MIR171i, mdm-MIR171j, mdm-MIR171k, mdm-MIR171l, mdm-MIR171m, mdm-MIR171n, mdm-MIR172a, mdm-MIR172b, mdm-MIR172c, mdm-MIR172d, mdm-MIR172e, mdm-MIR172f, mdm-MIR172g, mdm-MIR172h, mdm-MIR172i, mdm-MIR172j, mdm-MIR172k, mdm-MIR172l, mdm-MIR172m, mdm-MIR172n, mdm-MIR172o, mdm-MIR394a, mdm-MIR394b, mdm-MIR395a, mdm-MIR395b, mdm-MIR395c, mdm-MIR395d, mdm-MIR395e, mdm-MIR395f, mdm-MIR395g, mdm-MIR395h, mdm-MIR395i, mdm-MIR396a, mdm-MIR396b, mdm-MIR396c, mdm-MIR396d, mdm-MIR396e, mdm-MIR396f, mdm-MIR396g, mdm-MIR408a, mdm-MIR482b, mdm-MIR482c, mdm-MIR408b, mdm-MIR408c, mdm-MIR408d, mdm-MIR482d, mdm-MIR159c, mdm-MIR171o, mdm-MIR169e, mdm-MIR169f, sly-MIR164a, sly-MIR164b, sly-MIR394, sly-MIR166c, sly-MIR156d, sly-MIR156e, sly-MIR396a, sly-MIR167b, sly-MIR482d, sly-MIR169e, sly-MIR396b, sly-MIR171e, gma-MIR167k, gma-MIR167l, gma-MIR169w, sly-MIR172c, sly-MIR408, sly-MIR172d, sly-MIR169f, sly-MIR171f, mdm-MIR159d, mdm-MIR159e, mdm-MIR159f, mdm-MIR166j, mdm-MIR395j, mdm-MIR169g, mdm-MIR169h, mdm-MIR169i, mdm-MIR169j, mdm-MIR171p, mdm-MIR395k, mdm-MIR171q, mdm-MIR169k, mdm-MIR169l, mdm-MIR169m, mdm-MIR169n, mdm-MIR172p, mdm-MIR395l, mdm-MIR169o
miR396, miR166, miR172, miR169 and miR395 were also present at multiple loci in date palm, and these miRNAs had the highest average copy number in the other plant species. [score:1]
[1 to 20 of 1 sentences]
17
[+] score: 1
In this study, the 46 families were all identified though some miRNAs did not found in all libraries, such as miR169 that only detected in wild tomatoes. [score:1]
[1 to 20 of 1 sentences]