sort by

28 publications mentioning zma-MIR164g

Open access articles that are associated with the species Zea mays and mention the gene name MIR164g. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 274
The results revealed that pri-miR164b (primary miRNA) and pri-miR164d showed 2.4-fold and 3.6-fold higher expression levels in 87-1 than in Zong3 (P < 0.01), respectively (Figure 5D), suggesting that a higher expression of miR164 precursors may contribute to the higher expression of mature miR164s in 87-1. ZmmiR164b allelic expression between maize hybrids and parentsThe WAVE HPLC system was used to determine whether the differential expression of ZmmiR164 precursors was regulated by a cis-or trans-acting mechanism. [score:12]
The results revealed that pri-miR164b (primary miRNA) and pri-miR164d showed 2.4-fold and 3.6-fold higher expression levels in 87-1 than in Zong3 (P < 0.01), respectively (Figure 5D), suggesting that a higher expression of miR164 precursors may contribute to the higher expression of mature miR164s in 87-1. The WAVE HPLC system was used to determine whether the differential expression of ZmmiR164 precursors was regulated by a cis-or trans-acting mechanism. [score:10]
The post-transcriptional and post-translational regulation of NAC1 was also reported as follows: the role of miR164 expression in late auxin response was intended to clear NAC1 mRNA, which would attenuate the auxin signaling that inhibits lateral root development [18]. [score:9]
Overall, our data suggest that the miR164b promoter showed higher activity in inbred 87-1 maize than in Zong3 maize, leading to higher expression of mature miR164, which down-regulated ZmNAC1 expression at the post-transcriptional level. [score:8]
Overall, our data suggest that in 87-1 maize (which has fewer lateral roots than Zong3), the miR164b promoter has higher activity than in Zong3, leading to a higher expression level of mature miR164, which then downregulates ZmNAC1 expression at the post-transcriptional level. [score:8]
miR164 as the trans-acting factor that regulates expression of ZmNAC1We assessed whether maize miR164 is the trans-acting factor that can direct the cleavage of ZmNAC1, and demonstrated that miR164 can direct ZmNAC1 mRNA cleavage, by using a modified RNA ligase -mediated 5' rapid amplification of cDNA ends (5'-RACE) protocol. [score:6]
It has been reported that miR164 negatively regulates NAC1 expression, which in turn affects lateral root development in Arabidopsis; however, little is known about the involvement of the maize NAC family and miR164 in lateral root development. [score:6]
In addition, ZmmiR164 showed higher expression levels in inbred 87-1 than in Zong3, which was the opposite of the expression pattern found for ZmNAC1, suggesting that miR164 negatively regulates ZmNAC1. [score:6]
These findings strongly suggest that the cis-element of the miR164 promoter is the main contributor to the differential expression of pri-miR164, and it could be argued that other elements might also be involved in the regulation of pri-miR164 expression. [score:6]
Our results indicate one possible pathway in maize by which differences in miR164b promoter activity resulted in a different expression pattern for mature miR164 which negatively regulates ZmNAC1 expression in 87-1 and Zong3, thereby contributing to a significantly different lateral root phenotype. [score:6]
Both mature miR164 and miR164 precursors had higher expression in 87-1 than Zong3, which was the opposite of the expression pattern of ZmNAC1. [score:5]
It has been reported that miR164 directs the regulation of 5 target NAC-domain transcription factor mRNAs in Arabidopsis[17]. [score:5]
Based on the ZmNAC1 mRNA cleavage that was directed by miR164, we consider miR164 to be one of the post-transcriptional trans-acting factors that regulates ZmNAC1 expression. [score:5]
Expression of putative miR164-regulated ZmNAC genesTo assay the expression patterns of seven maize NAC genes (tc258020, Zm017452, Zm029753, Zm020717, Zm020987, Zm4253255028 and Zm390255026) containing the miR164 complementary site, six maize tissues from the roots, leaves, leaf sheaths, male spikes, ears and stems were used for real-time PCR. [score:5]
This pathway might contribute to the smaller lateral root numbers in 87-1. By contrast, both pri-miR164b and mature miR164 had a lower expression level in inbred Zong3 maize than in 87-1 maize, leading to a higher expression of ZmNAC1, thus contributing to greater numbers of lateral roots. [score:5]
This study shows that ZmNAC1 also plays an important role in maize lateral root development and that ZmNAC1 expression is regulated at the post-transcriptional level by miR164. [score:5]
Northern blot analysis showed that the mature miR164 had higher expression levels in 87-1 than in Zong3 (Figure 5C), which was the opposite of the ZmNAC1 expression pattern in the two inbred lines. [score:5]
miR164 -mediated ZmNAC1 mRNA cleavage in vivoPlant miRNAs have been implicated in the control of various developmental processes, including leaf development [30- 32], flower development [33] and lateral root development [18]. [score:5]
Moreover, our analysis also indicated that the promoter variation of maize pri-miR164b in 87-1 and Zong3 might be one in which the dominant cis-element affects the expression of pri-miR164b, leading to differences in mature miR164 expression. [score:5]
An allelic expression assay showed that trans-regulatory elements were the dominant mediators of ZmNAC1 differential expression in 87-1 and Zong3, and further analysis revealed that miR164 was a trans-element that guided the cleavage of endogenous ZmNAC1 mRNA. [score:5]
The ZmNAC1 gene and its expression in maize rootsIn Arabidopsis, miR164 directs NAC1 mRNA cleavage, which affects lateral root development [18]. [score:5]
miR164 as a trans-acting factor contributed to the differential expression of ZmNAC1 between 87-1 and Zong3The results of the allelic variation analysis for ZmNAC1 in 87-1, Zong3, and hybrid Zong3/87-1 maize showed that the trans-acting factor, and not the cis-element, was most likely the major factor underlying the differential expression of ZmNAC1 between 87-1 and Zong3. [score:5]
The higher miR164 expression in roots suggested that miR164 might target the NAC gene in roots in vivo. [score:5]
Further study revealed that both the mature miR164 and the precursor pri-miR164b were expressed at higher levels in 87-1 than in Zong3 and that the promoter of ZmmiR164b from 87-1 showed higher activity in vivo and in vitro than that of Zong3, which might lead to the higher expression level of miR164 in 87-1 than in Zong3. [score:5]
We then investigated the expression of mature miR164 to determine whether miR164, which can act as the trans-acting regulator of ZmNAC1, also showed differential expression between 87-1 and Zong3. [score:4]
NAC1 is able to transmit auxin signals that promote lateral root emergence, and miR164 guides the cleavage of NAC1 mRNA, which is followed by a mechanism to cleave NAC1 mRNA and downregulate auxin signals [8, 18]. [score:4]
Of these, 7 ZmNACs were putative targets for regulation by miR164. [score:4]
We first sought to identify the putative miR164 -targeted NAC genes in maize, which might be involved in lateral root development. [score:4]
Further study showed that miR164 is one of the trans-acting factors that negatively regulates ZmNAC1, resulting in a different ZmNAC1 expression pattern between the two inbred lines 87-1 and Zong3, contributing to a significant difference in the lateral root phenotype between these two lines. [score:4]
miR164 as the trans-acting factor that regulates expression of ZmNAC1. [score:4]
Expression of putative miR164-regulated ZmNAC genes. [score:4]
Our study then extends the research by showing that ZmNAC1 expression is regulated at the post-transcriptional level by maize miRNA164. [score:4]
Figure 5 Differential expression of Zm-miR164 between 87-1 and Zong3. [score:3]
It has been reported that Arabidopsis miR164 negatively regulates lateral root development, showing a strict inverse correlation between changes in the miR164 level and the NAC1 mRNA levels. [score:3]
Putative ZmNACs were obtained as the putative miR164 target genes. [score:3]
Our results showed that GUS activity that was driven by the promoter from 87-1was significantly higher than that driven by the promoter from Zong3 and by the background (Figure 7B), which strongly suggested that the different promoter activities of pri-miR164 resulted in the diversity of pri-mir164 transcript levels that was found between the two inbred lines, which may have led to the difference in mature miR164 expression between 87-1 and Zong3. [score:3]
Seven ZmNAC genes, TC258020, Zm390255026, Zm029753, Zm020717, Zm020987, Zm4253255028 and Zm017452, were found to be putative miR164 target genes (Additional file 2), and are shown in pink dots in supplemental Figure 1 (Additional file 1). [score:3]
In Arabidopsis, miR164 directs NAC1 mRNA cleavage, which affects lateral root development [18]. [score:3]
Other groups have independently reported evidence for the miR164 -mediated regulation of CUC1[17] and CUC2[19, 20], which have been implicated in meristem development and the separation of aerial organs. [score:3]
We assessed whether maize miR164 is the trans-acting factor that can direct the cleavage of ZmNAC1, and demonstrated that miR164 can direct ZmNAC1 mRNA cleavage, by using a modified RNA ligase -mediated 5' rapid amplification of cDNA ends (5'-RACE) protocol. [score:3]
Because the oligonucleotide probe used in the RNA gel blot cannot discriminate among these eight transcripts, we used gene-specific RT-PCR to analyze pri-miR164 expression. [score:3]
This pattern was similar to the pattern of miR164 expression in Arabidopsis, where miR164 accumulated more in its roots and inflorescences than in other tissues [18]. [score:3]
Figure 1 Expression analysis of ZmNAC genes and miR164 in various maize tissues, including roots, leaves, ears, leaf sheaths, stems, and male spikes, as determined by real-time PCR. [score:3]
Red arcs represent 14 subgroups and pink dots denote putative miR164 target genes in maize. [score:3]
To perform the miR164 expression analysis, an RNA gel blot containing low-molecular-weight RNA (10 μg low molecular weight RNA per lane) was hybridized with an end-labeled DNA oligonucleotide that was complementary to miR164. [score:3]
In Arabidopsis, miR164 has been predicted to target 5 NAC-domain transcripts: NAC1, CUC1, CUC2, At5g07680 and At5g61430[17]. [score:3]
In Arabidopsis, miR164 can target five NAC domain-encoding mRNAs, including the NAC1, CUC1, CUC2, At5g07680, and At5g61430 mRNAs [17]. [score:3]
This nucleotide position was located in the middle of the miR164/ NAC mRNA complementary region, indicating that ZmNAC1 mRNA was the in vivo miR164 cleavage target (Figure 5A and B). [score:3]
miR164 as a trans-acting factor contributed to the differential expression of ZmNAC1 between 87-1 and Zong3. [score:3]
An RNA gel blot of maize miRNA164 showed that the miR164 expression levels were higher in roots, leaf sheaths and male spikes than in other organs (Figure 1). [score:3]
Conditional overexpression of miRNA164 decreased NAC1 mRNA and lateral root numbers. [score:3]
Among the seven candidate miR164 target genes, TC258020 encoded a protein of 305 amino acids and shared a high homology with Arabidopsis NAC1, so we named this gene ZmNAC1. [score:3]
Click here for file Putative ZmNACs were obtained as the putative miR164 target genes. [score:3]
In this study, a miR164 -targeted NAC domain gene that was designated ZmNAC1 was isolated from maize. [score:3]
To assay the expression patterns of seven maize NAC genes (tc258020, Zm017452, Zm029753, Zm020717, Zm020987, Zm4253255028 and Zm390255026) containing the miR164 complementary site, six maize tissues from the roots, leaves, leaf sheaths, male spikes, ears and stems were used for real-time PCR. [score:2]
Promoters of Zm-miR164b from inbred line 87-1 showed higher activityTo provide evidence for the cis-regulation of the miR164 precursor, we isolated a 2.6 kb region upstream of the miR164b transcription start site and then determined the activity of the promoters from the two inbred lines 87-1 and Zong3. [score:2]
Based on our results, it is possible to improve the root development in maize by altering the miR164 pathway. [score:2]
To provide evidence for the cis-regulation of the miR164 precursor, we isolated a 2.6 kb region upstream of the miR164b transcription start site and then determined the activity of the promoters from the two inbred lines 87-1 and Zong3. [score:2]
Here we provide evidence showing that miR164 directs ZmNAC1 mRNA cleavage in vivo at the 11 [th] nucleotide of the complementary miR164 binding site, and this cleavage was conserved between maize and Arabidopsis. [score:2]
Identification of putative miR164-regulated NAC genes in maize. [score:2]
To obtain putative miRNA-regulated NAC genes from maize, we searched the reverse complementary site for the mature miR164 in the 175 ZmNACs. [score:2]
Gene-specific RT-qPCR primers for 7 putative miR164 targets were designed according to the EST sequences. [score:2]
A. miR164 cleavage sites in ZmNAC1 mRNA were determined by RNA ligase -mediated 5 [′] RACE. [score:1]
This figure shows the reverse complementary site for mature miR164 and 7 ZmNACs. [score:1]
Maize miR164 sequences were identified in http://www. [score:1]
It has recently been proposed that miR164 guides the cleavage of NAC mRNAs in Arabidopsis[18]. [score:1]
RNA sequences with 5' termini corresponding to the center of the miR164 complementary site were consistently detected as the product of miRNA processing. [score:1]
The mature miR164 from these loci differed by one or two nucleotides at the 3' end. [score:1]
DNA oligonucleotides that were complementary to miR164 were end-labeled with γ-32P-ATP using T4 polynucleotide kinase (TaKaRa, Dalian, China). [score:1]
The good hairpin structure indicates that both of them can give rise to mature miR164. [score:1]
The ZmmiR164b allele from Zong3 contained an 8 bp insertion in comparison to that of 87-1; this insert did not have an effect on the formation of the pre-miR164 secondary structure (Additional file 6). [score:1]
C. RNA gel blot analysis of Zm-miR164 in 10 μg of low-molecular-weight RNA that was prepared from 8-day-old root samples from two separate inbred lines. [score:1]
miR164 -mediated ZmNAC1 mRNA cleavage in vivo. [score:1]
First, the full-length cDNA of the miR164b and miR164d precursors was obtained by 5′RACE, and the subsequent sequence analysis indicated that the single transcription start sites for pri-miR164b and pri-miR164d were 105 and 126 nucleotides upstream from the start of the mature miR164, respectively. [score:1]
MiR164 was potentially transcribed from 8 loci, specifically from miR164a to miR164h, in maize. [score:1]
[1 to 20 of 75 sentences]
2
[+] score: 49
miR156 target: GRMZM2G126018_T01 (SBP23); miR159 target: GRMZM2G139688_T01 (GA-MYB); miR164 target: GRMZM2G393433_T01 (CUC2); miR168 target: GRMZM2G039455_T01 (AGO1c). [score:9]
Therefore, although miR164 and miR156 targets might display contrasting behavior in undifferentiated tissues (darkness, hormones' presence) between maize genotypes, their expression regulation is apparently required for plant regeneration through SE, regardless the genotype (Figure 6). [score:6]
On the other hand, increments of both, miRNA and target, upon hormone 50% reduction (e. g., miR156, miR164, miR168) suggest miRNA up-regulation might be required to control the levels of transcripts induced during SE. [score:6]
Conversely, these studies have identified novel targets for conserved miRNAs such as miR156 and miR164, or known targets with novel miRNA sites. [score:5]
The authors suggested miR164, miR169, miR528, and miR529 might be primarily participating in the process of EC induction through the regulation of targets involved in auxin and gibberellin signaling. [score:4]
In a previous study performed on VS-535-derived EC, we found that development-related miRNAs such as miR156, miR159, miR164 and miR168 decreased as the length of subculture increased, while stress-related miRNAs such as miR397, miR398, miR408, and miR528 remained highly expressed (Dinkova and Alejandri-Ramirez, 2014). [score:4]
In plants, conserved miR164 targets are NAC transcription factors (Mallory et al., 2004). [score:3]
Similar to SBP23, a miR164 previously validated target, GRMZM2G393433_T01 (NAC-domain transcription factor CUC2 or NAC107, Zhai et al., 2013; Liu et al., 2014) was more abundant in darkness than light for either genotype (Figure 3, lanes a–c). [score:3]
Similarly, miR164 initial increase during SE is consistent with maintaining low levels of its CUC2 target during plant regeneration under light. [score:3]
However, in maize EC subcultured for long periods (up-to 2 years) we have found a gradual reduction in miR156, miR164 and miR168 levels without impairment on the callus embryogenic potential (Dinkova and Alejandri-Ramirez, 2014). [score:1]
For instance, at least two-fold increase in miR156, miR164, miR168 and miR408, was observed in VS-535, 50% hormones, while a modest 1.2-1.4-fold increase under the same conditions was evident for H-565 (Figure 2 and Supplementary Material, Figure S1). [score:1]
They identified miR528, miR156, miR166, miR168, miR390, miR164, miR167, miR398, miR397, miR408, and miR319 as the most abundant during dedifferentiation. [score:1]
Previous studies in maize long-term subcultured EC indicated that miR156, miR159, miR164, miR168, and miR319 importantly reduce their levels in subcultures maintained for more than 18 months (Dinkova and Alejandri-Ramirez, 2014). [score:1]
The levels of miR156 and miR164 decreased by three-fold (with respect to 50% hormones) for VS-535, but showed no change for H-565 (Figure 2, lanes c vs. [score:1]
miR156 and miR164 have been found as SE-abundant miRNAs in several species, including maize (Li et al., 2012; Shen et al., 2013; Dinkova and Alejandri-Ramirez, 2014; Wu et al., 2015). [score:1]
[1 to 20 of 15 sentences]
3
[+] score: 45
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR156k, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR164e, zma-MIR164f, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR390a, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR398a, zma-MIR398b, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR528a, zma-MIR528b, zma-MIR529, zma-MIR827, zma-MIR390b
Our results showed that miR164 has higher expression during early development of maize seed while NAM expression is low, and the NAM gene has higher expression during the latter stages (Fig 3A). [score:8]
Results showed that the relative expression levels of the NAM transcripts decreased significantly when the precursor of miR164 was expressed (Fig 1A), which demonstrated that miR164 can reduce the abundance of its predicted target gene, probably through mediating the degradation of the NAM transcripts. [score:7]
To confirm the interaction between target genes and their cognate miRNAs in vivo, two miRNAs, miR166 and miR164 with higher expression in the early development of maize kernel were chosen. [score:6]
A total of 377 target genes were predicted from 165 miRNA families, the interaction between miR164, miR166 and their target genes were confirmed in vivo. [score:5]
Given the miR164 target sites was located in the coding sequence (CDS) of No apical meristem (NAM) gene, the overexpression vectors of NAM CDS as well as the precursor of miR164 were constructed and subsequently coinoculated into N. benthamiana leaves. [score:5]
Target genes of miR164 encode No apical meristem (NAM) proteins (S2 Table), The NAM family genes encode transcription factors that play critical roles in boundary formation and lateral organ separation, which is important for proper leaf and flower patterning [91]. [score:3]
In conclusion, conserved miRNA families that accumulate to higher levels during the early stage of maize seed development such as miR159, miR164, and miR166 might play roles by participating in transcriptional regulation and morphogenesis. [score:3]
We found that miR159, miR164, miR166, miR171, miR390, miR393, and miR529 families all accumulated to high levels during the very early stage of development (4–6 DAP), especially miR166. [score:2]
miR159, miR164, miR166, miR171, miR390, miR399, and miR529 families might play roles in the embryogenesis of maize grain by participating in transcriptional regulation and morphogenesis, while miR167 and miR528 families might play roles in the process of nutrient storage by participating in the metabolism process and stress response. [score:2]
The function of miR164 in posttranscriptional regulation of NAM genes is conserved in many plants [92– 95]. [score:2]
The Agrobacterium tumefaciens (Agrobacterium) strain EHA105 was transformed with the constructs pCAMBIA 2300S: miR166, pCAMBIA 2300S: Unknown CDS, pCAMBIA 2300S: Unknown CDS+3’UTR, pCAMBIA 2300S: miR164, pCAMBIA 2300S: NAM CDS, pCAMBIA 2300S: GFP. [score:1]
The early stage accumulation of miR164 indicates that it might play roles in the embryogenesis of maize kernel through silencing NAM genes. [score:1]
[1 to 20 of 12 sentences]
4
[+] score: 38
In leaves, miR164 was down- regulated, while its predicted targets, GRMZM2G063522 and GRMZM2G009892, were up-regulated (Fig. 3) as expected, and these code for proteins that are members of the NAC domain super -family (SCOP: 101941). [score:7]
Under N-limiting condition, three of the miRNAs (miR164, miR172, and miR827) were up-regulated while the others were down-regulated (Table S1). [score:7]
The first includes miR160, miR164, miR167, miR169, miR172, and miR319, which target transcription factors involved in further regulation of gene expression and signal transduction. [score:6]
For example, miR164 was only up-regulated in leaves under chronic nitrogen limitation. [score:4]
There are 30 miR164 putative target genes in maize which include seven NAC transcription factors and three MYB domain transcription factors of unknown function, with the rest being involved in diverse processes. [score:3]
With regards to tissue specificity(or tissue dependent), some miRNAs were only regulated in roots or leaves, such as miR160, miR167, miR168, miR319 and miR395 in roots, and miR164, miR172, miR397, miR398 and miR827 in leaves, while some others were regulated in both tissues, such as miR169, miR399, miR408 and miR528 (Fig. 4). [score:3]
Nine miRNA faimlies (miR164, miR169, miR172, miR397, miR398, miR399, miR408, miR528, and miR827) were identified to be differentially expressed in leaves in response to chronic low N condition. [score:3]
A quantitative trait locus (QTL) encoding a NAC transcription factor, a putative target of miR164, had been shown to accelerate senescence and increase nutrient remobilization from leaves to developing grains in ancient wheat [41]. [score:3]
It implies that zma-miR164 might play a role in remobilizing the nitrogen from old to new leaves to deal with the N-limiting condition. [score:1]
Nine miRNA families (miR164, miR169, miR172, miR397, miR398, miR399, miR408, miR528, and miR827) were identified in leaves, and nine miRNA families (miR160, miR167, miR168, miR169, miR319, miR395, miR399, miR408, and miR528) identified in roots. [score:1]
[1 to 20 of 10 sentences]
5
[+] score: 33
Auxin -induced expression of miR164 and subsequent cleavage of NAC1 provides a homeostatic mechanism to down-regulate auxin signals for lateral root development in Arabidopsis [87]. [score:7]
miR164 regulates root or shoot development by repressing NAC/NAM proteins whereas miR393 is negative regulator of TIR1-like (F-box) and the cleavage of F-box gene down-regulate auxin signals. [score:7]
These 13 targets are targeted by 8 miRNA families (miR159, miR164, miR167, miR172, miR319, miR393, miR528, miRn7) (Table S9), which are active participants in the signal transduction at the early stage of hypoxia conditions. [score:5]
miR164, miR167 and miR393 have been shown to be involved in root cap formation, lateral root development, or adventitious rooting through the auxin signal which is further transduced by their downstream NAC/NAM, ARF and F-box targets respectively [79]. [score:4]
qRT-PCR results showed the expression of GRMZM2G146380 was negatively correlated with miR164 in all three inbred lines (Figure 6) while GRMZM2G009892 only showed negative correlation in Hz32 (Figure S4). [score:3]
NAC-domain protein (GRMZM2G009892) and NAM protein (GRMZM2G146380) were predicted targets of miR164 in our study. [score:3]
miR159, miR164, miR167,miR393, miR408 and miR528, which are involved in root cap formation, lateral root development, root/shoot elongation and plant cell detoxification by scavenging the reactive oxygen species and thus protecting damage to cellular structure were induced under short waterlogging conditions in waterlogging tolerant line Hz32 and repressed in waterlogging sensitive line Mo17. [score:2]
The induction of miR164 in Hz32 might suggest that miRNA mediated the breakdown of NAC/NAM mRNA to attenuate waterlogging signals, which led to reduce embryo/shoot meristem or lateral root production signals at the early stage of waterlogging. [score:1]
In B73, the mid-tolerant line, miR159, miR408 and miR528 (similar to Hz32) are induced while miR164, miR167 and miR393 (similar to Mo17) are reduced, suggested the repression of ABA and cupredoxin signals and the induction of auxin signals at the initial stages of waterlogging. [score:1]
[1 to 20 of 9 sentences]
6
[+] score: 33
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR160e, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR396b, zma-MIR396a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR156k, zma-MIR160f, zma-MIR396c, zma-MIR396d, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164h, zma-MIR166n, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR390a, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR529, zma-MIR390b
The target distributions of miRNA families themselves were investigated, which showed that zma-miR166, zma-miR396, zma-miR529, zma-miR164, and zma-miR169 had the most targets, with 6, 6, 5, and 5 target mRNAs, respectively, while zma-miR160, zma-miR390, zma-miR393, and zma-miR2275 had the fewest target mRNAs, with a single target each (Figure 3). [score:9]
Conversely, in V-372, members of 7 families—zma-miR164, zma-miR169, zma-miR393, zma-miR396, zma-miR399, zma-miR529, and zma-miR2275—were significantly up-regulated; and zma-miR156, zma-miR159, zma-miR166 and zma-miR395 families were significantly down-regulated. [score:7]
Similarly, miR164 targets the NAC transcription factor and CUC (cup shaped cotyledon) genes in Arabidopsis (Rhoades et al., 2002); these genes are responsible for root and shoot development. [score:4]
In tolerant genotype HKI-1532, 16 miRNAs belonging to the zma-miR159, zma-miR160, zma-miR164, zma-miR166, zma-miR169, zma-miR390, zma-miR395, zma-miR396, and zma-miR399 families were significantly up-regulated. [score:4]
Furthermore, zma-miR164 showed higher expression in crown roots but not in seminal roots of maize, suggesting that it could play a crucial role in development of crown roots (Kong et al., 2014). [score:4]
m psbp domain-containing protein Chloroplastic-like zma-miR164-h gnl|GNOMON|46106013. [score:1]
m Hypothetical protein zma-miR164-f gnl|GNOMON|10384054. [score:1]
m gdsl esterase lipase at5g45910-like miR164 zma-miR164-f gnl|GNOMON|10380054. [score:1]
m Hypothetical protein zma-miR164-b gnl|GNOMON|4218083. [score:1]
m Hypothetical protein zma-miR164-f gnl|GNOMON|18192014. [score:1]
[1 to 20 of 10 sentences]
7
[+] score: 32
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, osa-MIR396e, zma-MIR396b, zma-MIR396a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR156k, zma-MIR160f, tae-MIR159a, tae-MIR159b, tae-MIR160, tae-MIR164, tae-MIR167a, tae-MIR1127a, osa-MIR169r, osa-MIR396f, zma-MIR396c, zma-MIR396d, osa-MIR2275a, osa-MIR2275b, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, osa-MIR396g, osa-MIR396h, osa-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR397a, zma-MIR397b, zma-MIR398a, zma-MIR398b, hvu-MIR156a, tae-MIR156, hvu-MIR159b, hvu-MIR159a, hvu-MIR166a, tae-MIR167b, hvu-MIR168, hvu-MIR169, tae-MIR169, hvu-MIR397a, tae-MIR398, tae-MIR171b, hvu-MIR166b, hvu-MIR166c, osa-MIR2275c, osa-MIR2275d, tae-MIR1122b, tae-MIR9653a, tae-MIR9654a, tae-MIR9656, tae-MIR9657a, tae-MIR9659, tae-MIR9660, tae-MIR1127b, tae-MIR9661, tae-MIR396, tae-MIR9665, tae-MIR2275, tae-MIR9667, tae-MIR167c, tae-MIR1120b, tae-MIR397, tae-MIR1130b, tae-MIR5384, tae-MIR9675, tae-MIR1120c, tae-MIR9679, tae-MIR9657b, hvu-MIR397b, hvu-MIR156b, tae-MIR9653b
miR164 regulates NAC-domain target genes in Arabidopsis, and perturbation of miR164-directed regulation causes developmental abnormalities in embryonic, vegetative and floral organs [12]. [score:7]
Although low expression (976 RPM and 921 RPM, respectively) was observed for both miR164 and miR396 families, their expression level was still about 4 to 200 times greater than any of the 6 remaining highly conserved miRNA families (Table  2 and Additional file 2). [score:5]
miR160 and miR164 targeted Auxin response factor (ARF) and NAC transcription factor (NAC), respectively (Additional file 11), which control key steps in plant development. [score:4]
In the present study, the expression level of miR164 increased with wheat grain development, from 135 RPM in the 5-d seeds to more than 240 RPM in the 10-d and 20-d seeds (Table  2). [score:4]
Of the 15 known miRNA families, 4 (miR169, miR166, miR164 and miR160) were preferentially expressed in the developing seeds (with the logarithm of the fold changes of 0.3 ~ 3.0 in the developing seeds, more than those in the flag leaves) (Figure  3a, Table  2). [score:3]
Four of the 15 known miRNA families, including miR169, miR166, miR164 and miR160 were preferentially expressed in the developing seeds with the logarithm of the fold changes of 0.3 ~ 3.0. [score:3]
From 5 days post-anthesis to 20 days post-anthesis, miR164 and miR160 increased in abundance, whereas miR169 decreased, suggesting that these miRNAs have coordinating functions in the different developmental stages of wheat seed. [score:2]
From 5 days post-anthesis to 20 days post-anthesis, miR164 and miR160 increased in abundance in the developing seeds, whereas miR169 decreased, suggesting their coordinating functions in the different developmental stages of wheat seed. [score:2]
This result is consistent with the previously reported functions of miR164. [score:1]
From 5 DPA to 20 DPA, miR164 and miR160 increased in abundance, whereas miR169 decreased (Figure  3a, Table  2). [score:1]
[1 to 20 of 10 sentences]
8
[+] score: 28
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR162, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR394a, zma-MIR394b, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR319a, zma-MIR319c, zma-MIR319b, zma-MIR319d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR393a, zma-MIR408a, zma-MIR156k, zma-MIR160f, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR397a, zma-MIR397b, zma-MIR398a, zma-MIR398b, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR408b, zma-MIR482, zma-MIR528a, zma-MIR528b, zma-MIR529, zma-MIR827, zma-MIR1432, zma-MIR444a, zma-MIR444b
In Arabidopsis, miR164 targets transcription factor NAC1 to down-regulate auxin signals for Arabidopsis lateral root development [55]. [score:7]
We proposed that the down-regulation of miR393, miR167 and miR164 in imbibed seed might play important roles in dry-to-germinating seed transition by regulating auxin perception, transduction and function. [score:5]
A-K represented the expression profiles of some predicted target genes of miR156, miR164, miR166, miR167, miR168, miR169, miR319, miR393, miR408, miR528 and zma-miRn6 in dry and imbibed seeds, respectively. [score:5]
These 17 targets were targets of 11 miRNA families (miR156, miR164, miR166, miR167, miR168, miR169, miR319, miR393, miR408, miR528 and zma-miRn6). [score:5]
The 12 down-regulated miRNA families were miR156, miR159, miR164, miR166, miR167, miR168, miR169, miR172, miR319, miR393, miR394 and miR397. [score:4]
MiR164 has also been shown to play a role in plant development. [score:1]
MiR164, miR167 and miR393 were also significantly decreased in maize imbibed seed. [score:1]
[1 to 20 of 7 sentences]
9
[+] score: 26
That is, they all (miR159 and its target with IAA; miR166, miR169, miR393, miR396, and their targets with ZR + iPA; miR159, miR396 and their targets with GA; miR396 and their targets with BR; miR159, miR396 and their targets with JA; miR160, miR164, miR166, miR169, miR172, and miR396 and their targets with ABA) showed a significant positive and/or negative correlation with the phytohormone levels. [score:13]
Furthermore, in Arabidopsis, miR164 has been shown to target a subset of NAC TFs that includes CUC1 and CUC2, which contribute to organ boundary formation including carpel marginal tissue development (Nahar et al., 2012). [score:4]
miR164 and its target gene, NAC, have been described in relation to carpel marginal tissue development in Arabidopsis (Sieber et al., 2007). [score:4]
Eight known miRNAs (miR159, miR160, miR164, miR166, miR169, miR172, miR393, and miR396), four newly identified miRNAs, and 12 target genes were selected for qRT-PCR validation. [score:3]
Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. [score:2]
[1 to 20 of 5 sentences]
10
[+] score: 24
Its expression level also showed a gradual increase from the 7 [th] to the 9 [th] internode in both inbred lines, and NAC1 was negatively regulated by miR164a-d, and g. miR164 might decrease the expression of NAC1 by responding to auxin signaling, thereby reducing the elongation and development of the different internodes of the same inbred lines. [score:7]
Most of the targets were found to be transcription factors (TFs), such as auxin response factors (miR160 and miR167), growth -regulating factor (miR396), N-acetylcysteine domain containing protein (miR164), SQUAMOSA promoter -binding protein-like (miR156) and nuclear TF Y (miR169). [score:4]
miR164 in the late auxin response was intended to clear NAC1 mRNA, which would attenuate the auxin signaling that inhibits lateral root development [20]. [score:4]
However, the miRNAs zma-miR164, zma-miR167, zma-miR169 and zma-miR393 had multiple members and targeted multiple genes. [score:3]
In this study, NAC1 was predicted by degradome sequencing to be the target of miR164. [score:3]
NACs and NF-Y were the main targets of the miR164 and mi169 families. [score:3]
[1 to 20 of 6 sentences]
11
[+] score: 18
Expression profiles were established based on stem-loop real-time RT-PCR analysis of six selected miRNAs, comprising miR156, miR164, miR167, miR168, miR169 and miR396, as well as real-time RT-PCR analysis of their target mRNAs. [score:5]
In the present work, zma-miR164 was repressed over dominantly in the hybrid, which indicated that up-regulation of NAC1 transcription might occur and result in enhancement of auxin signals. [score:4]
The down-regulation of NAC1 transcripts caused either by auxin -induced miR164 or by ubiquitination might decrease auxin signals [39]– [40]. [score:4]
The transcription factor NAC1 is considered to be the target gene of the maize miRNA zma-miR164. [score:2]
0039578.g004 Figure 4 The transcription factor NAC1 is considered to be the target gene of the maize miRNA zma-miR164. [score:2]
In the maize hybrid Yuyu22, miR167 was predominantly activated, whereas miR156, miR160, miR164 and miR166 were either dominantly or predominantly repressed. [score:1]
[1 to 20 of 6 sentences]
12
[+] score: 13
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR171a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, osa-MIR390, osa-MIR444a, zma-MIR171d, zma-MIR171f, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR408a, zma-MIR156k, zma-MIR160f, osa-MIR528, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR1432, osa-MIR827, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR2275a, osa-MIR2275b, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR390a, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR408b, zma-MIR528a, zma-MIR528b, zma-MIR827, zma-MIR1432, zma-MIR390b, osa-MIR395x, osa-MIR395y, osa-MIR2275c, osa-MIR2275d, zma-MIR444a, osa-MIR6251
Different from miRNA families discussed above, expression levels of miR164 family, reported regulators of the CUP- SHAPED COTYLEDON (CUC) genes [45], and miR390 family, regulators of lateral root development by cleaving TRANS- ACTING SIRNA3 (TAS3) precursor RNA [46], converged to normal condition after 24-h illumination although different expression patterns between maize and rice were detected during de-etiolation process (Additional file 8, Fig.   4). [score:8]
miR156, miR160, miR164, miR166, miR167, miR171, miR172, and miR390, had been earlier reported to play evolutionarily conserved roles in plant development [54]. [score:2]
Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. [score:2]
Many of them, i. e., miR156, miR160, miR164, miR166, miR167, miR171, miR172 and miR390, were suggested to play highly evolutionary conserved roles across plant species [54]. [score:1]
[1 to 20 of 4 sentences]
13
[+] score: 12
MiR156 targeted SBP transcription factor [52, 53], which affected shoot maturation in Arabidopsis, miR159c/d and miR164 were predicted to target MYB domain transcription factors [24, 54], and miR160 targeted ARF transcription factors [55, 56]. [score:7]
Overexpression of miR164 reduces the CUC1/ CUC2 (CUP-SHAPED COTYLEDON) transcripts and results in cotyledon development defect [20]. [score:4]
Other miRNAs in high abundance include zma-miR164, zma-miR156 and zma-miR827, which were more than 1,000 reads in both two tissues. [score:1]
[1 to 20 of 3 sentences]
14
[+] score: 12
For example, miR162 was not found in our research; miR156, miR164, miR167, and miR396 were not down-regulated in the roots, but in the leaves, miR164 showed a down-regulation. [score:7]
The abundance of extremely conserved miRNAs has been determined, such as miR156, miR159, miR164, miR166, miR167, miR168, and miR398, which was very similar to previous reports (Zhao et al., 2013). [score:1]
In this research, two identified novel miRNAs (mir-29 and mir-36) showed a high similarity with known miR164 and miR167 family species (Figure 4), respectively. [score:1]
Among these potential miRNAs, mir-29 and mir-36 were classified as new members of the miR167 family and miR164 family, respectively (Figure 4). [score:1]
Among all of the novel miRNAs, mir-29 and mir-36 were classified as new members of the miR167 family and miR164 family, respectively. [score:1]
The results suggest that mir-29 and mir-36 may play a primary role among zma-miR167 species and zma-miR164 species in responses to high salinity, respectively. [score:1]
[1 to 20 of 6 sentences]
15
[+] score: 11
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR394a, zma-MIR394b, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR396b, zma-MIR396a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR319a, zma-MIR319c, zma-MIR319b, zma-MIR319d, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR171k, zma-MIR171h, zma-MIR408a, zma-MIR156k, zma-MIR160f, zma-MIR396c, zma-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164h, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR408b, zma-MIR529
Additionally, other miRNAs and their targets, for example, osa-miR159, osa-miR160/miR167, osa-miR164,and osa-miR172, targeting mRNAs coding for MYB/TCP, Auxin Response Factor, salicylic acid -induced protein 19, and AP2 proteins, respectively, were also found to be involved in leaf senescence through phytohormone signaling pathways in rice [23]. [score:5]
MiR164 and miR319 were identified to target ORE1 and TCP transcription factors, and both are negative regulators of leaf aging [17– 22]. [score:4]
Trifurcate feed-forward regulation of age -dependent cell death involving miR164 in Arabidopsis. [score:2]
[1 to 20 of 3 sentences]
16
[+] score: 10
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR162, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR394a, zma-MIR394b, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR396b, zma-MIR396a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR319a, zma-MIR319c, zma-MIR319b, zma-MIR319d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR408a, zma-MIR156k, zma-MIR160f, zma-MIR396c, zma-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR397a, zma-MIR397b, zma-MIR398a, zma-MIR398b, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR408b, zma-MIR482, zma-MIR528a, zma-MIR528b, zma-MIR529, zma-MIR827, zma-MIR1432, zma-MIR444a, zma-MIR444b
The miR156, miR164, miR168, miR393, miR395, miR396, miR398, and miR399 families had higher signatures in juvenile root and seedling tissues while miR172 demonstrated a higher expression level in reproductive tissues (tassel and ear). [score:3]
Target genes of miRNA families, miR164, miR397, miR408, and miR528 showed enrichment in laccase and oxidoreductase activities and were found to be involved in secondary metabolic processes such as phenylpropanoid, amino acids, aromatic compounds and lignin catabolic processes (Table S7). [score:3]
The same trend is observed in many other miRNA families including miR164, miR166, miR169, miR171, miR172, miR319 and miR396 as they target various families of transcription factors such as NAM (No Apical Meristem) proteins, bZIP (basic-leucine Zipper) genes, CBF (CCAAT binding factor), GRAS transcription factor, AP2 (APETALA2)-EREBP (Ethylene-Responsive Element Binding Proteins), CCCH type zinc finger protein and TCP (Teosinite branched, Cycloidea, and PCF), GRF transcription factor families respectively [12], [71], [85]– [87]. [score:3]
These families are: miR156, miR160, miR164, miR166, miR167, miR172, miR396, and miR528. [score:1]
[1 to 20 of 4 sentences]
17
[+] score: 8
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR396b, zma-MIR396a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR319a, zma-MIR319c, zma-MIR319b, zma-MIR319d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR408a, zma-MIR156k, zma-MIR160f, zma-MIR396c, zma-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR408b, zma-MIR1432
Analyses of target genes indicated that the expression of four miRNA families (miR164, miR396, miR530, and miR1846) was positively or negatively correlated with that of their respective targets, genes that were associated with symptom development. [score:8]
[1 to 20 of 1 sentences]
18
[+] score: 8
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR159a, ath-MIR160a, ath-MIR160b, ath-MIR160c, ath-MIR162a, ath-MIR162b, ath-MIR164a, ath-MIR164b, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR167a, ath-MIR167b, ath-MIR168a, ath-MIR168b, ath-MIR169a, ath-MIR172a, ath-MIR172b, ath-MIR159b, osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, ath-MIR167d, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169k, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR172c, ath-MIR172d, ath-MIR395a, ath-MIR395b, ath-MIR395c, ath-MIR395d, ath-MIR395e, ath-MIR395f, ath-MIR396a, ath-MIR396b, ath-MIR399a, ath-MIR399b, ath-MIR399c, ath-MIR399d, ath-MIR399e, ath-MIR399f, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, ath-MIR408, ath-MIR156g, ath-MIR156h, ath-MIR159c, ath-MIR164c, ath-MIR167c, ath-MIR172e, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR408, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR162, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, osa-MIR396e, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR396b, zma-MIR396a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171h, zma-MIR408a, zma-MIR156k, zma-MIR160f, osa-MIR529a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR529b, osa-MIR169r, osa-MIR396f, zma-MIR396c, zma-MIR396d, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR2275a, osa-MIR2275b, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, osa-MIR396g, osa-MIR396h, osa-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR408b, zma-MIR529, osa-MIR395x, osa-MIR395y, osa-MIR2275c, osa-MIR2275d, ath-MIR156i, ath-MIR156j
Beyond miR156 and miR172, miR164 targets genes encoding NAM proteins, and may be involved in regulating ear development (Table  3), similar to how miR164 is postulated to regulate NAC-domain targets in Arabidopsis [58]. [score:8]
[1 to 20 of 1 sentences]
19
[+] score: 6
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR394a, zma-MIR394b, zma-MIR396b, zma-MIR396a, zma-MIR399a, zma-MIR399c, zma-MIR399b, zma-MIR399d, zma-MIR399e, zma-MIR399f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR319a, zma-MIR319c, zma-MIR319b, zma-MIR319d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR408a, zma-MIR156k, zma-MIR160f, zma-MIR396c, zma-MIR396d, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR390a, zma-MIR393b, zma-MIR393c, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR397a, zma-MIR397b, zma-MIR398a, zma-MIR398b, zma-MIR399g, zma-MIR399h, zma-MIR399i, zma-MIR399j, zma-MIR408b, zma-MIR528a, zma-MIR528b, zma-MIR827, zma-MIR390b, zma-MIR444a, zma-MIR444b
MiR159, miR160, miR164, miR319, miR390 and miR444 were expressed mainly in the embryo at 9 DAP and 15 DAP, showing their regulatory function in early embryo development (Figure 3c). [score:5]
Among them, miR166 was the most abundant family (17,602) followed by miR171 (11,988), miR827 (7686), miR167, miR396, miR528, miR156, miR408, miR160, miR390, miR159, miR444, miR319, miR398, miR168, miR394, miR164, miR393 and miR169 (Figure 3a). [score:1]
[1 to 20 of 2 sentences]
20
[+] score: 5
Moreover, ZmNAC102, one of ATAF members, has been previously found to control the lateral root development through miRNA164-directed cleavage [56], and due to relatively high expression in root, other ATAF members might have similar function in maize like ZmNAC102. [score:5]
[1 to 20 of 1 sentences]
21
[+] score: 4
The miRNAs studied were expressed at strikingly different levels, from very low (miR172) to very high (miR164, miR168). [score:3]
The size of PCR products obtained on maize RNA preparations was checked by electrophoresis in 5 % agarose, and additionally for zma-MIR164 and zma-MIR172 the products were cloned and sequenced. [score:1]
[1 to 20 of 2 sentences]
22
[+] score: 3
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR169a, osa-MIR393a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR393b, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, osa-MIR444a, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR166l, zma-MIR166m, zma-MIR393a, zma-MIR156k, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR820a, osa-MIR820b, osa-MIR820c, osa-MIR1425, osa-MIR1428a, osa-MIR169r, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR1428b, osa-MIR1428c, osa-MIR1428d, osa-MIR1428e, osa-MIR1874, osa-MIR2055, osa-MIR827, osa-MIR1428f, osa-MIR1428g, zma-MIR396d, osa-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR164e, zma-MIR164f, zma-MIR164h, zma-MIR166n, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR827, osa-MIR395x, osa-MIR395y, zma-MIR444a, zma-MIR444b
First we verified that a canonical rice miR164a precursor was expressed in Nicotiana benthamiana leaves, producing miR164 that could be detected by Northern blot with a specific probe while no signal was detected using probes complementary to other regions of the stem-loop pre-miR164 (data not shown). [score:3]
[1 to 20 of 1 sentences]
23
[+] score: 3
Other miRNAs from this paper: zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR160e, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, sbi-MIR172b, sbi-MIR172c, sbi-MIR172a, sbi-MIR160d, sbi-MIR160a, sbi-MIR160c, sbi-MIR160b, sbi-MIR160e, sbi-MIR164a, sbi-MIR169b, sbi-MIR169a, sbi-MIR395b, sbi-MIR395a, sbi-MIR395d, sbi-MIR395e, sbi-MIR164b, sbi-MIR169c, sbi-MIR169d, sbi-MIR169f, sbi-MIR169g, sbi-MIR169i, sbi-MIR172e, sbi-MIR319a, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR319a, zma-MIR319c, zma-MIR319b, zma-MIR319d, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR172e, zma-MIR160f, sbi-MIR164c, sbi-MIR395f, sbi-MIR160f, sbi-MIR164d, sbi-MIR164e, sbi-MIR169e, sbi-MIR169h, sbi-MIR169j, sbi-MIR169k, sbi-MIR169l, sbi-MIR169m, sbi-MIR169n, sbi-MIR172d, sbi-MIR319b, sbi-MIR395c, sbi-MIR395g, sbi-MIR395h, sbi-MIR395i, sbi-MIR395j, sbi-MIR395k, sbi-MIR395l, sbi-MIR437g, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164h, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, sbi-MIR169o, sbi-MIR169p, sbi-MIR169q, sbi-MIR172f, sbi-MIR5381, sbi-MIR5382, sbi-MIR5383, sbi-MIR5384, sbi-MIR5385, sbi-MIR5386, sbi-MIR5387a, sbi-MIR5388, sbi-MIR5389, sbi-MIR5387b
Although the expression difference of miR160, miR164 and miR319 between BTx623 and Rio was inherited in the F2, and thus of interest for further analysis, it was less than two fold; so we decided to focus on miR169, miR172 and miR395 instead. [score:3]
[1 to 20 of 1 sentences]
24
[+] score: 3
In rice, it has been reported that two lincRNAs that act as decoys of miR160 and miR164 can regulate floral and/or seed development [40]. [score:3]
[1 to 20 of 1 sentences]
25
[+] score: 3
Other miRNAs from this paper: zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR171d, zma-MIR171f, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR396b, zma-MIR396a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR156k, zma-MIR160f, zma-MIR396c, zma-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR390a, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR528a, zma-MIR528b, zma-MIR827
Members of several other miRNA families, including zma-miR164, zma-miR167, zma-miR169, zma-miR171, and zma-miR827, were also highly expressed in MS and PS; they were barely detected in MP and GP, however, indicating their specific roles in maize female reproductive tissues. [score:3]
[1 to 20 of 1 sentences]
26
[+] score: 2
Trifurcate feed-forward regulation of age -dependent cell death involving miR164 in Arabidopsis. [score:2]
[1 to 20 of 1 sentences]
27
[+] score: 2
Li Z Peng J Wen X Guo H Ethylene-insensitive3 is a senescence -associated gene that accelerates age -dependent leaf senescence by directly repressing miR164 transcription in ArabidopsisPlant cell. [score:2]
[1 to 20 of 1 sentences]
28
[+] score: 1
Other miRNAs from this paper: ath-MIR156a, ath-MIR156b, ath-MIR156c, ath-MIR156d, ath-MIR156e, ath-MIR156f, ath-MIR159a, ath-MIR160a, ath-MIR160b, ath-MIR160c, ath-MIR162a, ath-MIR162b, ath-MIR164a, ath-MIR164b, ath-MIR166a, ath-MIR166b, ath-MIR166c, ath-MIR166d, ath-MIR166e, ath-MIR166f, ath-MIR166g, ath-MIR167a, ath-MIR167b, ath-MIR169a, ath-MIR171a, ath-MIR172a, ath-MIR172b, ath-MIR159b, osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR162a, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, ath-MIR167d, ath-MIR169b, ath-MIR169c, ath-MIR169d, ath-MIR169e, ath-MIR169f, ath-MIR169g, ath-MIR169h, ath-MIR169i, ath-MIR169j, ath-MIR169k, ath-MIR169l, ath-MIR169m, ath-MIR169n, ath-MIR171b, ath-MIR171c, ath-MIR172c, ath-MIR172d, ath-MIR393a, ath-MIR393b, ath-MIR394a, ath-MIR394b, ath-MIR395a, ath-MIR395b, ath-MIR395c, ath-MIR395d, ath-MIR395e, ath-MIR395f, osa-MIR393a, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, ath-MIR156g, ath-MIR156h, ath-MIR159c, ath-MIR164c, ath-MIR167c, ath-MIR172e, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR162b, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR162, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR394a, zma-MIR394b, zma-MIR395b, zma-MIR395c, zma-MIR395a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR156k, zma-MIR160f, osa-MIR528, osa-MIR529a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, ath-MIR827, osa-MIR529b, osa-MIR1432, osa-MIR169r, osa-MIR827, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, osa-MIR2275a, osa-MIR2275b, zma-MIR2118a, zma-MIR2118b, zma-MIR2118c, zma-MIR2118d, zma-MIR2118e, zma-MIR2118f, zma-MIR2118g, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR393b, zma-MIR393c, zma-MIR395d, zma-MIR395e, zma-MIR395f, zma-MIR395g, zma-MIR395h, zma-MIR395i, zma-MIR395j, zma-MIR395k, zma-MIR395l, zma-MIR395m, zma-MIR395n, zma-MIR395o, zma-MIR395p, zma-MIR482, zma-MIR528a, zma-MIR528b, zma-MIR529, zma-MIR827, zma-MIR1432, osa-MIR395x, osa-MIR395y, osa-MIR2275c, osa-MIR2275d, ath-MIR156i, ath-MIR156j
This was also the case for some other miRNA families, such as zma-miR164 (from 14 read to 25,253 reads) and zma-miR166 (from 931 reads to 300,478 reads). [score:1]
[1 to 20 of 1 sentences]