sort by

12 publications mentioning tae-MIR395a

Open access articles that are associated with the species Triticum aestivum and mention the gene name MIR395a. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

[+] score: 41
Similarly, six miRNAs were identified as UV-B-responsive miRNAs in wheat (Wang et al., 2013), in which miR159, miR167a, and miR171 are upregulated and miR156, miR164, miR395 are downregulated. [score:7]
In our study, 13 members of the MIR395 gene family were overexpressed under H [2]O [2] stress and their target genes were Bradi1g09030 (encoded ATP-sulfurylase 1), Bradi1g24110 (encoded Ribosome-recycling factor), and Bradi2g52840 (encoded disease resistance protein RGA4), which may be involved in oxidative stress response. [score:7]
Among the known differential miRNAs in our study, some regulated two or more target genes with the same function, such as bdi-miR159a and bdi-miR169d/k, whereas more miRNAs, such as bdi-miR395, bdi-miR408, and bdi-miR528, regulated two or more target genes with different functions (Figure 4 and Table 1). [score:7]
For example, Bradi2g52840 (target gene of the bdi-miR395 family) encodes disease resistance protein RGA4, which interacts with seven proteins encoded by the target genes of H [2]O [2] stress-responsive miRNAs, including the two MYB TFs mentioned above (Figure 4). [score:7]
For the 21 upregulated known miRNAs, miR395 was the major family containing 14 members. [score:4]
Similar to our results, all of the identified MIR395 gene family members are also upregulated under drought stress in B. distachyon (Bertolini et al., 2013). [score:4]
Similar to other known bdi-miR395 family members, this miRNA was also upregulated (Table 2). [score:4]
As the largest MIR gene family in B. distachyon, the MIR395 gene family includes 15 members. [score:1]
[1 to 20 of 8 sentences]
[+] score: 15
In their study, they found that the expression of miR164, miR395, and miR156 was downregulated while miR159, miR167, and miR171 expression was upregulated in leaf tissues of wheat. [score:11]
For instance, miR395 targeted the APS genes which are responsible for regulation of the sulfur assimilation pathway. [score:4]
[1 to 20 of 2 sentences]
[+] score: 12
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR162a, osa-MIR164a, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR394, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR159b, osa-MIR162b, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR408, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR437, osa-MIR396e, osa-MIR444a, osa-MIR528, osa-MIR529a, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR529b, tae-MIR159b, tae-MIR167a, tae-MIR399, tae-MIR408, tae-MIR444a, osa-MIR1432, osa-MIR444b, osa-MIR444c, osa-MIR444d, osa-MIR444e, osa-MIR444f, osa-MIR1848, osa-MIR1858a, osa-MIR1858b, osa-MIR1862a, osa-MIR1862b, osa-MIR1862c, osa-MIR1871, osa-MIR1862d, osa-MIR1862e, osa-MIR827, osa-MIR396f, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR395x, osa-MIR395y, hvu-MIR156a, tae-MIR156, hvu-MIR159b, hvu-MIR166a, tae-MIR167b, hvu-MIR168, tae-MIR395b, hvu-MIR397a, tae-MIR398, tae-MIR444b, hvu-MIR166b, hvu-MIR444a, osa-MIR1862f, osa-MIR1862g, hvu-MIR399, hvu-MIR444b, hvu-MIR166c, tae-MIR396, tae-MIR167c, tae-MIR397, hvu-MIR397b, hvu-MIR156b
Therefore, we infer that the fact that expression of miR395 is detected in Brachypodium, wheat and barley but not rice may be because of low expression levels and comparatively small datasets for rice (see Table 1). [score:5]
miR395 targets ATP sulfurylase and it is known that in Arabidopsis, at least, it is difficult to detect if sulfate levels are not limiting [19]. [score:3]
Another noteworthy feature of the data collated in Table 2 is that while miR395 is expressed in the wheat, Brachypodium and barley datasets, it does not appear in the three rice datasets reviewed in our study. [score:3]
This is the case even though the presence of the appropriate precursor to miR395 in the rice genome was used as evidence that it is among the 20 miRNA families conserved across monocots and dicots [2]. [score:1]
[1 to 20 of 4 sentences]
[+] score: 10
Although ATP-sulfurylase is similarly targeted by miR395 within its coding region in rice, we did not find similar miRNAs targeting its 3′ UTR, indicating miR395 combined with other miRNAs can target ATP-sulfurylase in a potential wheat-specific pathway. [score:7]
For instance, the unigene encoding ATP-sulfurylase 3 was targeted by miR395 within the coding region and by Ta-miR2041, Ta-miR2047 and tae-miR3020 in the 3′ UTR. [score:3]
[1 to 20 of 2 sentences]
[+] score: 9
In a previous study based on 12-day old seedlings of heat tolerant cultivar HD2985 subjected to 42 °C for 2 hours, 44 mature known wheat miRNAs (miRbase v19) were identified from mixed samples of root, stem, flag leaf and pollen tissues, among which, 19 were differentially expressed including four families (miR1130, miR1136, miR395a and miR408) showing expression only in heat stressed plants 51. [score:5]
MiR395, predicted to target methyltransferases, was not differentially expressed upon any of the stresses across all time points in our experiment. [score:4]
[1 to 20 of 2 sentences]
[+] score: 7
For instance, the expression of the new member of miR395 family, miR395-21 corresponding to apMir_20968, is commonly regulated in response to cold and Al stress (Figure  3c) indicating that miR395 is not specific to sulfate starvation as previously reported in Arabidopsis and rice [49, 64]. [score:4]
This indicates that miR395 mediates not only plant response to sulfate deficiency but also may mediate responses to other nutrients that are imbalanced under abiotic stress conditions. [score:1]
Zhao et al., [65] also reported that miR395 is involved in phosphate homeostasis in wheat. [score:1]
Taken together, our results indicate that miR395 would play a common role in plant nutrient homeostasis under abiotic stress conditions. [score:1]
[1 to 20 of 4 sentences]
[+] score: 6
Other miRNAs from this paper: osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR398a, osa-MIR398b, osa-MIR160e, osa-MIR160f, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR167j, osa-MIR437, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR818a, osa-MIR818b, osa-MIR818c, osa-MIR818d, osa-MIR818e, tae-MIR160, tae-MIR167a, tae-MIR1117, tae-MIR1118, tae-MIR1120a, tae-MIR1122a, tae-MIR1125, tae-MIR1127a, tae-MIR1128, tae-MIR1131, tae-MIR1133, tae-MIR1135, tae-MIR1136, tae-MIR1139, osa-MIR169r, osa-MIR1436, osa-MIR1439, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, bdi-MIR167a, bdi-MIR1139, bdi-MIR1122, bdi-MIR437, bdi-MIR169b, bdi-MIR1127, bdi-MIR1135, osa-MIR395x, osa-MIR395y, tae-MIR167b, tae-MIR169, tae-MIR395b, tae-MIR398, tae-MIR5085, bdi-MIR5070, bdi-MIR169d, bdi-MIR169i, bdi-MIR395a, bdi-MIR169j, bdi-MIR160a, bdi-MIR395b, bdi-MIR167b, bdi-MIR160b, bdi-MIR167c, bdi-MIR169k, bdi-MIR160c, bdi-MIR167d, bdi-MIR169g, bdi-MIR160d, bdi-MIR160e, bdi-MIR169e, bdi-MIR398a, bdi-MIR169a, bdi-MIR169h, bdi-MIR169c, bdi-MIR395c, bdi-MIR5180b, bdi-MIR5175a, bdi-MIR5175b, bdi-MIR395d, bdi-MIR398b, bdi-MIR5180a, bdi-MIR169f, bdi-MIR395m, bdi-MIR395e, bdi-MIR395f, bdi-MIR395g, bdi-MIR395h, bdi-MIR395j, bdi-MIR395k, bdi-MIR395l, bdi-MIR395n, osa-MIR818f, bdi-MIR167e, bdi-MIR395o, bdi-MIR395p, bdi-MIR5049, bdi-MIR160f, bdi-MIR167f, bdi-MIR167g, bdi-MIR169l, bdi-MIR169m, bdi-MIR169n, bdi-MIR395q, bdi-MIR2118a, bdi-MIR2118b, tae-MIR1122b, tae-MIR1127b, tae-MIR1122c, tae-MIR167c, tae-MIR5175, tae-MIR1120b, tae-MIR1120c, tae-MIR6197, tae-MIR5049
miRNA Name Species of target was identified Experimentally conformed target miR167 ath/osa Auxin response factors miR395 ath/osa ATP sulphurylase miR160 ath/osa Auxin response factors ath-Arabidopsis thaliana; osa-Oryza sativa. [score:5]
Chr1 Chr2 Chr3 Chr4 Chr5 miR1127 * miR1128 * * * * * miR1133 * miR1135 * miR1139 * * * miR1439 * * * * * miR167 * miR395 * * miR5049 * * * * * miR5175 * * * miR5180 * * * miR5203 * * * * Bold miRNAs gave the best results that they were syntenic to Bd4. [score:1]
[1 to 20 of 2 sentences]
[+] score: 3
Similarly, the expression levels of miR156, miR159, miR164, miR167a, miR171, miR395 and miR6000 have been shown to be altered in wheat under UV-B stress [13]. [score:3]
[1 to 20 of 1 sentences]
[+] score: 1
For these 45 conserved miRNAs, 15 miRNA precursors could be identified based on the NCBI EST sequences, as shown in S2 Fig. Interestingly, miR395b-d were arranged in clusters (S2 Fig), indicating that the cluster arrangement of miR395 family is also conserved among monocots and dicots [38]. [score:1]
[1 to 20 of 1 sentences]
[+] score: 1
MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. [score:1]
[1 to 20 of 1 sentences]
[+] score: 1
Recent studies in Arabidopsis have also established that miR399, miR395 and miR398 are induced in response to phosphate-, sulfate- and Cu [2+]-deprived conditions, respectively [8, 26- 29]. [score:1]
[1 to 20 of 1 sentences]
[+] score: 1
Other miRNAs from this paper: tae-MIR395b
For example, there are 16 paralogs of miR395 in the maize genome [26]. [score:1]
[1 to 20 of 1 sentences]