sort by

7 publications mentioning stu-MIR166c

Open access articles that are associated with the species Solanum tuberosum and mention the gene name MIR166c. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 55
Of note, miR166c-3p and miR482e-5p targeted the CIP gene at 7 positions, followed by miR5303a, miR5303d and miR8004, which targeted the gene at 5 positions, while miR8032b-5p, miR8032c, and miR8032e-5p targeted the gene at 3 different loci. [score:7]
The NIa-Pro gene was observed to be attacked by 18 different miRNAs; only three of the above-mentioned miRNAs targeted the gene at multiple loci, while the other 15 miRNAs (miR166c-3p, miR166d-5p, miR1886b, miR1886c, miR395a, miR395b, miR395i, miR395j, miR399h, miR7992-5p, miR8000, miR8006-5p, miR8007a-5p, miR8011a-5p, miR8018, and miR8033-3p) targeted at a single locus as shown in Figure 5. Figure 6miRNA families and the number of putative targets to the NIa-Pro gene of Potato Virus Y (PVY). [score:7]
The NIa-Pro gene was observed to be attacked by 18 different miRNAs; only three of the above-mentioned miRNAs targeted the gene at multiple loci, while the other 15 miRNAs (miR166c-3p, miR166d-5p, miR1886b, miR1886c, miR395a, miR395b, miR395i, miR395j, miR399h, miR7992-5p, miR8000, miR8006-5p, miR8007a-5p, miR8011a-5p, miR8018, and miR8033-3p) targeted at a single locus as shown in Figure 5. Figure 6miRNA families and the number of putative targets to the NIa-Pro gene of Potato Virus Y (PVY). [score:7]
miRNAs targeting HC-Pro (helper component proteinase) geneSimilarly, miRNAs, such as miR164-3p, miR166c-3p, miR171a-3p, and miR171d-3p, targeted the HC-pro gene at multiple loci, while the gene was attacked by 19 miRNAs (Figure 5). [score:5]
Different families of miRNAs of Solanum tuberosum have considerable potential to target potato Virus-Y. miRNA families, such as miR166c-3p, miR482e-5p, miR5303a, miR5303d, miR8004, miR8032b-5p, miR8032c, miR8032e-5p, miR162b-3p, miR164-3p, miR160a-5p, miR8011a-5p, miR8018, and miR482e-5p, were found to have more potential to target PVY at multiple loci. [score:5]
miR164-3p targeted the HC-Pro gene at 3 different loci, and each miRNA(miR166c-3p, miR171a-3p, miR171d-3p) targeted HC-Pro at 2 different positions (Figure 4). [score:5]
It is also important to mention that five miRNAs (miR160a-5p, miR7997b, miR166c-3p, miR399h, and miR5303d) could target the CI, NIb, HC-Pro, NIa-Pro, CP, and VPg genes of PVY at multiple loci. [score:3]
On the one hand, we have short-listed 5 miRNAs (miR160a-5p, miR7997b, miR166c-3p, miR399h, and miR5303d) that could target the genes of PVY at multiple loci. [score:3]
Similarly, miRNAs, such as miR164-3p, miR166c-3p, miR171a-3p, and miR171d-3p, targeted the HC-pro gene at multiple loci, while the gene was attacked by 19 miRNAs (Figure 5). [score:3]
The current study revealed that miR482e-5p, miR160a-5p, and miR166c-3p cleaved the Vpg gene at 7 positions, while 16 microRNAs targeted this gene at 20 different loci. [score:3]
In this study, we found 19 miRNAs (miR164-3p, miR166c-3p, miR171a-3p, miR171d-3p, miR160a-5p, miR395a, miR395b, miR395i, miR395j, miR399h, miR399l-5p, miR408a-3p, miR482d-5p, miR8000, miR8004, miR8006-3p, miR8032b-3p, miR8032d-3p, and miR8032f-3p) that potentially targeted the HC-Pro (helper component proteinase) gene. [score:3]
The NIb gene was targeted by 20 different miRNAs (miR156d-3p, miR160a-5p, miR162b-3p, miR164-3p, miR166c-3p, miR166d-5p, miR167b-3p, miR167d-3p, miR169b-3p, miR169c-3p, miR5303a, miR5303d, miR7991a, miR7992-3p, miR7992-5p, miR7997b, miR8000, miR8006-5p, miR8011a-5p, and miR8018). [score:3]
Among the 19 miRNAs, 4 (miR164-3p, miR166c-3p, miR171a-3p, and miR171d-3p) were found to be more critical because of their potential interaction at nine loci of the HC-Pro gene. [score:1]
[1 to 20 of 13 sentences]
2
[+] score: 42
Among conserved miRNA targets, most of them were found to be transcripts coding for transcription factors (Additional file 5), such as Squamosa promoter -binding protein (regulated by miR156), GRAS family transcription factors (targeted by miR171), GAMYB-like2 (targeted by miR159), APETALA2 (target of miR172), NAC domain containing protein (targeted by miR164), Auxin response factors (regulated by miR160), PHAVOLUTA-like HD-ZIPIII protein (target of miR166) and nuclear transcription factors - YA4, YA5, YA6 (targeted by miR169). [score:17]
In addition to transcription factors, other targets included mRNA coding for F-box family protein (miR394), disease resistance protein and fiber expressed protein (miR159), laccase (miR397), salt tolerance protein (miR157), UDP-glucoronate decarboxylase 2 (miR164), DNA binding protein (miR166 and miR396), NL25 disease resistance protein (miR482), protein phosphatase and kinase (miR390), AGO1-1 (miR168), galactose oxidase (miR6149) and proteins with unknown functions (Additional file 5). [score:9]
Previous studies showed that miR166/miR165 targets HD-ZIP III transcription factor genes and regulate a wide range of developmental processes including meristem formation, vascular development, lateral organ polarity, root and nodule development [50- 52]. [score:7]
Among these, miR166 was the most abundantly expressed miRNA family (total TPM > 6,00,000). [score:3]
PHAVOULTA like HD-ZIP III transcription factor was one of the predicted targets of miR166 in our study. [score:3]
The second largest families, with 6 members each, were miR156, miR166 and miR172. [score:1]
Similar variations in read abundance were also observed among members of the miRNA families such as miR171 (0.1–1269 TPM), miR164 (0.2–6089 TPM), miR399 (0.5–232 TPM) and miR166 (23888–82963 TPM). [score:1]
Of the 33 conserved miRNA families, miR156, miR157, miR166 and miR168 showed high abundance, similar to those observed in other species [11, 12], each with total TPM >1,00,000 (Additional file 1). [score:1]
[1 to 20 of 8 sentences]
3
[+] score: 5
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR396e, mtr-MIR166a, mtr-MIR169a, mtr-MIR399b, mtr-MIR399d, mtr-MIR393a, mtr-MIR399c, mtr-MIR399a, mtr-MIR399e, mtr-MIR156a, mtr-MIR171a, mtr-MIR156b, mtr-MIR167a, mtr-MIR166b, mtr-MIR169c, mtr-MIR169d, mtr-MIR169e, mtr-MIR171b, mtr-MIR166c, mtr-MIR166d, mtr-MIR169f, mtr-MIR156c, mtr-MIR156d, mtr-MIR399f, mtr-MIR399g, mtr-MIR399h, mtr-MIR399i, mtr-MIR399j, mtr-MIR399k, mtr-MIR166e, mtr-MIR156e, mtr-MIR171c, mtr-MIR398a, mtr-MIR172a, mtr-MIR393b, mtr-MIR398b, mtr-MIR168a, mtr-MIR169g, mtr-MIR156f, mtr-MIR399l, mtr-MIR156g, mtr-MIR399m, mtr-MIR399n, mtr-MIR399o, mtr-MIR398c, mtr-MIR156h, mtr-MIR166f, mtr-MIR166g, mtr-MIR171d, mtr-MIR171e, mtr-MIR396a, mtr-MIR396b, mtr-MIR169h, mtr-MIR169b, mtr-MIR156i, mtr-MIR171f, mtr-MIR399p, osa-MIR169r, sly-MIR166a, sly-MIR166b, sly-MIR167a, sly-MIR169a, sly-MIR169b, sly-MIR169c, sly-MIR169d, sly-MIR171a, sly-MIR171b, sly-MIR171c, sly-MIR171d, sly-MIR397, sly-MIR156a, sly-MIR156b, sly-MIR156c, sly-MIR172a, sly-MIR172b, sly-MIR399, osa-MIR827, osa-MIR396f, mtr-MIR2118, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, mtr-MIR169k, mtr-MIR169j, mtr-MIR399q, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR5072, mtr-MIR4414a, mtr-MIR4414b, mtr-MIR482, mtr-MIR172b, mtr-MIR172c, mtr-MIR171h, mtr-MIR168b, mtr-MIR399r, mtr-MIR156j, sly-MIR482e, sly-MIR482a, mtr-MIR167b, mtr-MIR168c, mtr-MIR408, mtr-MIR396c, mtr-MIR171g, stu-MIR6024, sly-MIR6024, stu-MIR482c, stu-MIR482b, stu-MIR482a, stu-MIR482d, stu-MIR482e, sly-MIR482b, sly-MIR482c, stu-MIR6025, stu-MIR6026, sly-MIR6026, sly-MIR168a, sly-MIR168b, mtr-MIR169i, mtr-MIR172d, mtr-MIR397, mtr-MIR169l, mtr-MIR399s, mtr-MIR399t, stu-MIR7980a, stu-MIR7983, stu-MIR8007a, stu-MIR8007b, stu-MIR7980b, stu-MIR399a, stu-MIR399b, stu-MIR399c, stu-MIR399d, stu-MIR399e, stu-MIR399f, stu-MIR399g, stu-MIR399h, stu-MIR3627, stu-MIR171b, stu-MIR166a, stu-MIR166b, stu-MIR166d, stu-MIR171a, stu-MIR171c, stu-MIR399i, stu-MIR827, stu-MIR172b, stu-MIR172c, stu-MIR172a, stu-MIR172d, stu-MIR172e, stu-MIR156a, stu-MIR156b, stu-MIR156c, stu-MIR156d, stu-MIR171d, stu-MIR167c, stu-MIR167b, stu-MIR167a, stu-MIR167d, stu-MIR399j, stu-MIR399k, stu-MIR399l, stu-MIR399m, stu-MIR399n, stu-MIR399o, stu-MIR393, stu-MIR398a, stu-MIR398b, stu-MIR396, stu-MIR408a, stu-MIR408b, stu-MIR397, stu-MIR171e, stu-MIR156e, stu-MIR156f, stu-MIR156g, stu-MIR156h, stu-MIR156i, stu-MIR156j, stu-MIR156k, stu-MIR169a, stu-MIR169b, stu-MIR169c, stu-MIR169d, stu-MIR169e, stu-MIR169f, stu-MIR169g, stu-MIR169h, sly-MIR403, sly-MIR166c, sly-MIR156d, sly-MIR156e, sly-MIR396a, sly-MIR167b, sly-MIR482d, sly-MIR169e, sly-MIR396b, sly-MIR171e, sly-MIR172c, sly-MIR408, sly-MIR172d, sly-MIR827, sly-MIR393, sly-MIR398a, sly-MIR399b, sly-MIR6025, sly-MIR169f, sly-MIR171f
For example, miR166 and miR169 regulate nodule organogenesis in Medicago trunctula (Combier et al., 2006; Boualem et al., 2008). [score:2]
Five miRNA families (miR399, miR156, miR166, miR171, and miR172) had more than 10 members, and miR156 family, the largest family, had 23 members. [score:1]
The reads number for these known miRNAs also varied to a large extent ranging from 1 to 363294, with miR166, miR156, and miR168 families having the most abundant reads in the two libraries. [score:1]
MicroRNA166 controls root and nodule development in Medicago truncatula. [score:1]
[1 to 20 of 4 sentences]
4
[+] score: 2
Products of miR159, MYB33, and/or MYB101 genes that act downstream of CBP80 have been shown to be involved in the ABA- mediated regulation of potato responses to drought and similar studies have also identified and characterized microRNA families for drought stress response and their putative target genes including miR171 (stu-miRNA171a, b, and c), miR159, miR164, miR166, miR390, miR395, miR397, miR398, miR408, and miR482 (Hwang et al., 2011a, b; Pieczynski et al., 2013; Zhang et al., 2013). [score:2]
[1 to 20 of 1 sentences]
5
[+] score: 1
Wu et al. [43] predicted and validated numerous similar lncRNAs in Arabidopsis and Oryza sativa that bind to miR160, miR166, miR156, miR159 and miR172, individually. [score:1]
[1 to 20 of 1 sentences]
6
[+] score: 1
Among these miRNAs, the miR168 and miR166 families had the most reads in the control and treatment groups, respectively. [score:1]
[1 to 20 of 1 sentences]
7
[+] score: 1
The smallest read number (72) was found for miR827 but miR319, miR396, and miR166 show high abundance (>11,000 each, data not shown). [score:1]
[1 to 20 of 1 sentences]