sort by

2 publications mentioning tae-MIR5175

Open access articles that are associated with the species Triticum aestivum and mention the gene name MIR5175. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

[+] score: 42
Conversely, the expression of miR5175 was downregulated in A. tauschii but upregulated in T. aestivum in response to drought (Figure 5). [score:9]
The expressions of miR167, miR5175, and miR5205 were observed in both species, while miR5523 was expressed only in A. tauschii. [score:5]
miR5175 exhibited an opposite trend in expression; the expression of this miRNA was detectable only under normal conditions in A. tauschii and only under drought stress in T. aestivum. [score:5]
Due to its drought specific expression in bread wheat, miR5175 might have eluded identification from previous small RNA sequencing studies, which demonstrates the utility of genomic sequences in miRNA prediction and identification. [score:3]
Four miRNAs (miR167, miR5175, miR5205, miR5523) were selected for quantification of expression in response to drought stress, the most prevalent stress condition causing severe yield losses worldwide. [score:3]
FIGURE 5Expression levels of miR167, miR5175, and miR5205 in A. tauschii and T. aestivum seedlings in response to drought stress. [score:3]
Similar to miR5175, miR5523 expression, detected only in A. tauschii, was either completely lost or reduced to trace amounts under drought stress. [score:3]
Overall, this study provides the first report of expression of miR5523 and miR5175 in A. tauschii and T. aestivum, respectively, and the first experimental verification of miR5205 in both species. [score:3]
miR5175 had been reported by Jia et al. (2013) in A. tauschii; however, its expression in wheat had not been previously shown until now. [score:3]
In order to experimentally verify selected miRNAs, miR167, miR5175, miR5205 and miR5523, and quantify their expression levels in response to 4 h shock drought stress qRT-PCR using FastStart Universal SYBR Green Master (ROX; Mannheim, Germany) was performed with the following reaction mixture: 20 μl reaction included 3 μl RT stem–loop cDNA products, 10 μl 2× Master mix, 0.6 μl primers (300 nM each) and 6.4 μl nuclease-free water. [score:2]
To date, miR5175 has been reported only in A. tauschii and a closely related mo del grass species, B. distachyon (Baev et al., 2011; Jia et al., 2013). [score:1]
The annealing temperatures were optimized to 56°C for miR5523 and 58°C for miR167, miR5175, and miR5205. [score:1]
Of these, six miRNA families, namely miR1117, miR1130, miR1133, miR1139, miR5175, miR5205, were processed from exclusively repeat-related hairpins in A. tauschii but not in T. aestivum. [score:1]
[1 to 20 of 13 sentences]
[+] score: 1
Other miRNAs from this paper: osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR398a, osa-MIR398b, osa-MIR160e, osa-MIR160f, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR167j, osa-MIR437, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR818a, osa-MIR818b, osa-MIR818c, osa-MIR818d, osa-MIR818e, tae-MIR160, tae-MIR167a, tae-MIR1117, tae-MIR1118, tae-MIR1120a, tae-MIR1122a, tae-MIR1125, tae-MIR1127a, tae-MIR1128, tae-MIR1131, tae-MIR1133, tae-MIR1135, tae-MIR1136, tae-MIR1139, osa-MIR169r, osa-MIR1436, osa-MIR1439, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, bdi-MIR167a, bdi-MIR1139, bdi-MIR1122, bdi-MIR437, bdi-MIR169b, bdi-MIR1127, bdi-MIR1135, osa-MIR395x, osa-MIR395y, tae-MIR167b, tae-MIR169, tae-MIR395a, tae-MIR395b, tae-MIR398, tae-MIR5085, bdi-MIR5070, bdi-MIR169d, bdi-MIR169i, bdi-MIR395a, bdi-MIR169j, bdi-MIR160a, bdi-MIR395b, bdi-MIR167b, bdi-MIR160b, bdi-MIR167c, bdi-MIR169k, bdi-MIR160c, bdi-MIR167d, bdi-MIR169g, bdi-MIR160d, bdi-MIR160e, bdi-MIR169e, bdi-MIR398a, bdi-MIR169a, bdi-MIR169h, bdi-MIR169c, bdi-MIR395c, bdi-MIR5180b, bdi-MIR5175a, bdi-MIR5175b, bdi-MIR395d, bdi-MIR398b, bdi-MIR5180a, bdi-MIR169f, bdi-MIR395m, bdi-MIR395e, bdi-MIR395f, bdi-MIR395g, bdi-MIR395h, bdi-MIR395j, bdi-MIR395k, bdi-MIR395l, bdi-MIR395n, osa-MIR818f, bdi-MIR167e, bdi-MIR395o, bdi-MIR395p, bdi-MIR5049, bdi-MIR160f, bdi-MIR167f, bdi-MIR167g, bdi-MIR169l, bdi-MIR169m, bdi-MIR169n, bdi-MIR395q, bdi-MIR2118a, bdi-MIR2118b, tae-MIR1122b, tae-MIR1127b, tae-MIR1122c, tae-MIR167c, tae-MIR1120b, tae-MIR1120c, tae-MIR6197, tae-MIR5049
Chr1 Chr2 Chr3 Chr4 Chr5 miR1127 * miR1128 * * * * * miR1133 * miR1135 * miR1139 * * * miR1439 * * * * * miR167 * miR395 * * miR5049 * * * * * miR5175 * * * miR5180 * * * miR5203 * * * * Bold miRNAs gave the best results that they were syntenic to Bd4. [score:1]
[1 to 20 of 1 sentences]