sort by

13 publications mentioning tae-MIR1120c

Open access articles that are associated with the species Triticum aestivum and mention the gene name MIR1120c. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 35
To examine the functional relationship between the targets and their corresponding miRNAs, 9 known miRNAs (tae-miRNA156, tae-miRNA171, tae-miRNA159, tae-miRNA172, tae-blo-miRNA398, tae-miRNA164, tae-miRNA825, miRNA1120, and miRNA1130) and 2 novel miRNAs (novel-miR-964 and novel-miR-2186) and expression of their targets were examined by qRT-PCR to analyze their principle regulation during male fertility transition (Figure 6). [score:8]
The most frequent term for “biological process” was “regulation of transcription” [such as the targets of tae-miR1120c-5p (Traes_4BS_35F8C45F6), tae-miR1130b-3p (Traes_2AL_EE1350B36) and tae-miR164 (Traes_2BL_6AEE8AC28)] followed by “transporter” and “auxin-activated signaling pathway” [such as the targets of tae-miR167a (Traes_2AL_A7941CB12)] in three comparison groups (FS1/SS1, FS2/SS2 and FS3/SS3) of targets for known miRNAs (Figure 4 and Table S6). [score:8]
miR172, miR156, and miR171 interact with their respective target genes (AP2, SPL, and SCL), participating in the GA/abscisic acid (ABA) signaling pathway and GA/auxin signaling pathway to regulate flowering time; miR825, miR167, and miR1120/miR1130 interact with their respective target genes (CaBP, ARF, and LRR), participating in the CRY/PHY signaling pathway, auxin signaling pathway and JA signaling pathway, to modulate pollen development. [score:7]
The targets of tae-miR1120 and tae-miR1130 were annotated as the lipid phosphate phosphatase (LPP) gene, showing differential expression between FS and SS (Table S5). [score:5]
These predicted targets of known miRNAs, such as miR156, miR159, miR164, miR1120, and miR167, are described as growth -regulating factors, MYB family transcription factors, F-box domain-containing proteins, MADS-box family proteins, and SBP-box gene family members (Table S5). [score:4]
In this mo del, miR825, miR172, miR156, and miR171 are mainly regulated by light, whereas miR1130/miR1120, miR398, miR159, miR164, and two novel-miRNAs (novel-miR964 and novel-miR2186) may be regulated by light. [score:3]
[1 to 20 of 6 sentences]
2
[+] score: 21
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR171a, osa-MIR393a, osa-MIR397a, osa-MIR397b, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR319b, osa-MIR166k, osa-MIR166l, osa-MIR168a, osa-MIR168b, osa-MIR169f, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR172d, osa-MIR171i, osa-MIR166m, osa-MIR166j, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171a, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, zma-MIR171d, zma-MIR171f, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR319b, zma-MIR166k, zma-MIR166j, zma-MIR168a, zma-MIR168b, zma-MIR169f, zma-MIR171c, zma-MIR171j, zma-MIR171e, zma-MIR171i, zma-MIR171g, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR171k, zma-MIR171h, zma-MIR393a, zma-MIR156k, osa-MIR529a, tae-MIR159a, tae-MIR159b, tae-MIR171a, tae-MIR1120a, osa-MIR1430, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR166n, zma-MIR171l, zma-MIR171m, zma-MIR171n, zma-MIR393b, zma-MIR393c, zma-MIR397a, zma-MIR397b, hvu-MIR156a, tae-MIR156, hvu-MIR159b, hvu-MIR159a, hvu-MIR166a, hvu-MIR168, hvu-MIR171, hvu-MIR397a, tae-MIR171b, hvu-MIR1120, hvu-MIR166b, osa-MIR3981, hvu-MIR166c, tae-MIR1120b, tae-MIR397, hvu-MIR397b, hvu-MIR156b
The expression level of the mRNA/pri-miR1120 was almost equal in all developmental stages tested (Figure 8D). [score:4]
However, the level of the mature miR1120 varies during development with the lowest amount in 2-week- and 68-day-old plants (Figure 8E). [score:2]
This suggests the presence of the posttranscriptional mechanisms regulating the miR1120 biogenesis. [score:2]
Is miRNA1120, located in the 3′ UTR of a putative protein encoding gene, a functional microRNA?. [score:1]
Detection of pri-, pre- and mature miR1120. [score:1]
Sequences corresponding to the mature miR1120 and miR1120* were located downstream of the stop codon in the 3 [′] UTR (Table 1). [score:1]
miRNA1120 was located in the 3 [′] UTR of a protein coding gene. [score:1]
The pre-miR1120 detected by Northern blot is about 80 nt long and might correspond to the stem-loop structure predicted for pre-miR1120. [score:1]
The sequence and structure of the barley pre-miR1120 precursor show high similarity to its only known wheat orthologue pre-miR1120 (Figure 8B). [score:1]
Our finding raises the question whether miR1120 is a true miRNA molecule or it represents a small noncoding RNA such as a siRNA, especially considering its size of 24 nucleotides. [score:1]
We suggest that miR1120, located within the 3 [′] UTR of a protein-coding gene and described as a functional miRNA in wheat, may represent a siRNA generated from a mariner-like transposable element. [score:1]
The following thermal profile parameters were used: 10 min at 90°C, 45 cycles (or 40 cycles for pri-miRNA159b, pri-miRNA166n, pri-miRNA1126 and pri-miRNA1120) of 15 s at 95°C, and 1 min at 60°C. [score:1]
Interestingly, two introns in the putative protein/ MIR1120 gene (introns 3 and 5) carry the signatures of U12-type introns, with GU-AG dinucleotides at the 5 [′] and 3 [′] intron ends, and the classic U12 branch point site (UUUCCUCAA) [66, 67]. [score:1]
Unexpectedly, we found an 85 nt long region which included miR1120/miR1120* and displayed almost 80% sequence similarity to the short transposon element DNA/TcMar-Stowaway [69]. [score:1]
Figure 8 Schematic representation of the MIR1120 gene and its precursor. [score:1]
For mRNA/pri-miR1120 transcripts, we were able to detect only the fully spliced RNA, which is probably due to rapid and efficient splicing of all introns from the primary transcript (Figure 8C). [score:1]
[1 to 20 of 16 sentences]
3
[+] score: 11
Only tae-miR1122c-3p of MiR1120 family, tae-miR1122a, tae-miR1122b-3p and tae-miR1127a of MiR1122 family showed significant differentially expression between SL and NN plants. [score:3]
tae-miR2275-3p and miRNA families of MiR1120 and MiR1122 were found to be involved in the regulation of meiosis process and early anther development in wheat. [score:3]
In this study, a total of 94 known miRNAs were identified, two largest families were MiR1120 and MiR1122. [score:1]
The two large numbers of these miRNA families were seven and eight, represented by MiR1120 and MiR1122 family, respectively (Fig. 3b). [score:1]
MiR1120 consisted of 7 members (tae-miR1120a, tae-miR1120b-3p, tae-miR1120c-5p, tae-miR1121, tae-miR1122c-3p, tae-miR1137a and tae-miR1137b-5p). [score:1]
The two largest numbers of these miRNA families were seven and eight, represented by the families of miR1120 and miR1122, respectively. [score:1]
The families of MiR1120 and MiR1122 are required for early anther development. [score:1]
[1 to 20 of 7 sentences]
4
[+] score: 7
Additionally, miR390, miR5071, miR2118, miR9863 and miR7757 were predicted to target the Leucine-rich Repeat Receptor-like protein kinase family (LRR) that are involved in disease resistance [53, 54], as well as miR1120, miR1127, miR1130, miR1137, miR1439, miR5049, miR5062, and miR9673 that regulated the WD domain gene for flower development and the immune system [55– 57] (Additional file 1: Table S7). [score:7]
[1 to 20 of 1 sentences]
5
[+] score: 4
ME, whereas others such as hvu-miR1120, tae-miR9778, and tae-miR408 were down-regulated. [score:4]
[1 to 20 of 1 sentences]
6
[+] score: 4
The expressions of six of these miRNAs (miR1120, miR1128, miR1130, miR1135, miR1436, and miR5064) have also been shown previously in Aegilops small RNA libraries (Jia et al., 2013). [score:3]
miRNA names EST miR1117 gi|44888773|gb|AY534123.1|SEG_AY534122S2, gi| 442614136|gb|JX295577.1|, gi| 219814405| gb| FJ436986.1| miR1118 gi| 442614136|gb|JX295577.1| miR1120 gi|442614136|gb|JX295577.1| miR1125 gi|442614136|gb|JX295577.1| miR1128 Contig94874 miR1130 gi|300689672|gb|FJ898281.1|, gi|300689671|gb|FJ898280.1|, gi|300689650|gb|FJ898269.1| miR1135 AEGTA02478, Contig23917 miR1136 gi|22038180|gb|AY013754.1|, Contig23917, AEGTA02478 miR1436 gi|442614136|gb|JX295577.1| miR1439 gi|442614136|gb|JX295577.1| miR437 gi|13447949|gb|AF338431.1|AF338431, gi|13447949|gb|AF338431.1|AF338431 miR5049 Contig115885, Contig29895 miR5064 AEGTA07380 miR5086 gi|21779916|gb|AF497474.1| miR5174 Gb|JX295577.1, gb|GU211253.1 miR5180 Contig22176Hit names starting with “gi” were derived from NCBI A. tauschii (taxid:37682) EST database, while the others were derived from the transcriptome assembly of a recent study (Jia et al., 2013). [score:1]
[1 to 20 of 2 sentences]
7
[+] score: 3
Interestingly, miR1120 and miR1128 detected as conserved at interspecies level suggesting its important function. [score:1]
Besides it was shown that miR437 and miR1135; miR1120, miR1122, miR1128 and miR1130; and miR1120 and miR1128 were also contributing to the interaction circuitry of miR1436 and miR1439 in Kiziltan, TR39477 and TTD-22 samples, respectively, suggesting additional players in these complex networks. [score:1]
Among these, interactions through miR1120 and miR1128 were conserved at the interspecies level. [score:1]
[1 to 20 of 3 sentences]
8
[+] score: 3
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR164a, osa-MIR164b, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR156k, osa-MIR156l, osa-MIR159a, osa-MIR159b, osa-MIR159c, osa-MIR159d, osa-MIR159e, osa-MIR159f, osa-MIR160e, osa-MIR160f, osa-MIR164c, osa-MIR164d, osa-MIR164e, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR172d, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR164f, zma-MIR156d, zma-MIR156f, zma-MIR156g, zma-MIR156b, zma-MIR156c, zma-MIR156e, zma-MIR156a, zma-MIR156h, zma-MIR156i, zma-MIR160a, zma-MIR160c, zma-MIR160d, zma-MIR160b, zma-MIR164a, zma-MIR164d, zma-MIR164b, zma-MIR164c, zma-MIR169a, zma-MIR169b, zma-MIR167a, zma-MIR167b, zma-MIR167d, zma-MIR167c, zma-MIR160e, zma-MIR166a, zma-MIR166h, zma-MIR166e, zma-MIR166i, zma-MIR166f, zma-MIR166g, zma-MIR166b, zma-MIR166c, zma-MIR166d, zma-MIR171b, zma-MIR172a, zma-MIR172d, zma-MIR172b, zma-MIR172c, osa-MIR396e, zma-MIR396b, zma-MIR396a, zma-MIR156j, zma-MIR159a, zma-MIR159b, zma-MIR159c, zma-MIR159d, zma-MIR166k, zma-MIR166j, zma-MIR167e, zma-MIR167f, zma-MIR167g, zma-MIR167h, zma-MIR167i, zma-MIR168a, zma-MIR168b, zma-MIR169c, zma-MIR169f, zma-MIR169g, zma-MIR169h, zma-MIR169i, zma-MIR169k, zma-MIR169j, zma-MIR169d, zma-MIR169e, zma-MIR172e, zma-MIR166l, zma-MIR166m, zma-MIR156k, zma-MIR160f, tae-MIR159a, tae-MIR159b, tae-MIR160, tae-MIR164, tae-MIR167a, tae-MIR1127a, osa-MIR169r, osa-MIR396f, zma-MIR396c, zma-MIR396d, osa-MIR2275a, osa-MIR2275b, zma-MIR2275a, zma-MIR2275b, zma-MIR2275c, zma-MIR2275d, osa-MIR396g, osa-MIR396h, osa-MIR396d, zma-MIR156l, zma-MIR159e, zma-MIR159f, zma-MIR159g, zma-MIR159h, zma-MIR159i, zma-MIR159j, zma-MIR159k, zma-MIR160g, zma-MIR164e, zma-MIR164f, zma-MIR164g, zma-MIR164h, zma-MIR166n, zma-MIR167j, zma-MIR169l, zma-MIR169m, zma-MIR169n, zma-MIR169o, zma-MIR169p, zma-MIR169q, zma-MIR169r, zma-MIR396e, zma-MIR396f, zma-MIR396g, zma-MIR396h, zma-MIR397a, zma-MIR397b, zma-MIR398a, zma-MIR398b, hvu-MIR156a, tae-MIR156, hvu-MIR159b, hvu-MIR159a, hvu-MIR166a, tae-MIR167b, hvu-MIR168, hvu-MIR169, tae-MIR169, hvu-MIR397a, tae-MIR398, tae-MIR171b, hvu-MIR166b, hvu-MIR166c, osa-MIR2275c, osa-MIR2275d, tae-MIR1122b, tae-MIR9653a, tae-MIR9654a, tae-MIR9656, tae-MIR9657a, tae-MIR9659, tae-MIR9660, tae-MIR1127b, tae-MIR9661, tae-MIR396, tae-MIR9665, tae-MIR2275, tae-MIR9667, tae-MIR167c, tae-MIR1120b, tae-MIR397, tae-MIR1130b, tae-MIR5384, tae-MIR9675, tae-MIR9679, tae-MIR9657b, hvu-MIR397b, hvu-MIR156b, tae-MIR9653b
Of the 55 novel miRNAs, 28 were characterised to have different degrees of flag leaf-biased expression, with the logarithm of the fold changes ranged from 0.1 to 5.2, whereas 4 (tae-miR1120c, tae-miR1130b, tae-miR5384, and tae-miR9675) were detected only in flag leaves (Figure  3b, Additional file 5), suggesting that these novel miRNAs might participate in regulating the development and metabolism in wheat flag leaves. [score:3]
[1 to 20 of 1 sentences]
9
[+] score: 3
They observed that miR159, miR160, miR164, miR399, miR1117, and miR1120 exhibited differential expression suggesting a role in N homeostasis (Sinha et al. 2015) (Table 3). [score:3]
[1 to 20 of 1 sentences]
10
[+] score: 3
One instance each of miR1120, miR1136 & miR1139, 4 copies of miR1122, and 5 of miR1135 gave 100% identical matches to an EST, indicating that despite being DNA transposons, some of these sequences can be transcribed from chromosome 1AL. [score:1]
For miR1120 and miR1436, for which 54 and 150 occurrences respectively did not match any known repeats, the large number of these occurrences suggests that they may come from unknown repeat sequences. [score:1]
The majority of the remaining matches to both datasets were TE-related, indicating that TE sequences are significantly represented in the small RNA population in wheat cells; perfect EST matches to instances of miR1120, miR1122, miR1135, miR1136, miR1139, miR2027 & miR2031 indicate that some of these sequences are also transcribed from chromosome 1AL. [score:1]
[1 to 20 of 3 sentences]
11
[+] score: 2
Although different plant species may cope with stress using different miRNA -mediated regulatory strategies [42], some reported hub miRNAs, such as miR171, miR169, miR393 miR396, miR398 and miR1120, etc. [score:2]
[1 to 20 of 1 sentences]
12
[+] score: 2
Amongst known miRNAs, MIR156 was the most abundant family consisting of 534830 tags followed by MIR166 with 14643 counts, whereas MIR1120 was the least abundant with only 1 read count as shown in Table S1 in File S1. [score:1]
The identified known miRNAs belonged to 20 families, out of which 9 (miR1117, miR1120, miR1135, miR1136, miR1318, miR1432, miR1436, miR5084 and miR6201) were monocot-specific [43]. [score:1]
[1 to 20 of 2 sentences]
13
[+] score: 1
Other miRNAs from this paper: osa-MIR160a, osa-MIR160b, osa-MIR160c, osa-MIR160d, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR395b, osa-MIR395d, osa-MIR395e, osa-MIR395g, osa-MIR395h, osa-MIR395i, osa-MIR395j, osa-MIR395k, osa-MIR395l, osa-MIR395s, osa-MIR395t, osa-MIR395c, osa-MIR395a, osa-MIR395f, osa-MIR395u, osa-MIR398a, osa-MIR398b, osa-MIR160e, osa-MIR160f, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR167j, osa-MIR437, osa-MIR395m, osa-MIR395n, osa-MIR395o, osa-MIR395p, osa-MIR395q, osa-MIR395v, osa-MIR395w, osa-MIR395r, osa-MIR818a, osa-MIR818b, osa-MIR818c, osa-MIR818d, osa-MIR818e, tae-MIR160, tae-MIR167a, tae-MIR1117, tae-MIR1118, tae-MIR1120a, tae-MIR1122a, tae-MIR1125, tae-MIR1127a, tae-MIR1128, tae-MIR1131, tae-MIR1133, tae-MIR1135, tae-MIR1136, tae-MIR1139, osa-MIR169r, osa-MIR1436, osa-MIR1439, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, bdi-MIR167a, bdi-MIR1139, bdi-MIR1122, bdi-MIR437, bdi-MIR169b, bdi-MIR1127, bdi-MIR1135, osa-MIR395x, osa-MIR395y, tae-MIR167b, tae-MIR169, tae-MIR395a, tae-MIR395b, tae-MIR398, tae-MIR5085, bdi-MIR5070, bdi-MIR169d, bdi-MIR169i, bdi-MIR395a, bdi-MIR169j, bdi-MIR160a, bdi-MIR395b, bdi-MIR167b, bdi-MIR160b, bdi-MIR167c, bdi-MIR169k, bdi-MIR160c, bdi-MIR167d, bdi-MIR169g, bdi-MIR160d, bdi-MIR160e, bdi-MIR169e, bdi-MIR398a, bdi-MIR169a, bdi-MIR169h, bdi-MIR169c, bdi-MIR395c, bdi-MIR5180b, bdi-MIR5175a, bdi-MIR5175b, bdi-MIR395d, bdi-MIR398b, bdi-MIR5180a, bdi-MIR169f, bdi-MIR395m, bdi-MIR395e, bdi-MIR395f, bdi-MIR395g, bdi-MIR395h, bdi-MIR395j, bdi-MIR395k, bdi-MIR395l, bdi-MIR395n, osa-MIR818f, bdi-MIR167e, bdi-MIR395o, bdi-MIR395p, bdi-MIR5049, bdi-MIR160f, bdi-MIR167f, bdi-MIR167g, bdi-MIR169l, bdi-MIR169m, bdi-MIR169n, bdi-MIR395q, bdi-MIR2118a, bdi-MIR2118b, tae-MIR1122b, tae-MIR1127b, tae-MIR1122c, tae-MIR167c, tae-MIR5175, tae-MIR1120b, tae-MIR6197, tae-MIR5049
5D miRNAs with the highest apparent representation (over 100 copies) were miR1117, miR1120, miR1139, miR1436, miR5049 in 5DS; miR1117, miR1120, miR1122, miR1131, miR1135, miR1136, miR1436, miR5049 in 5DL (Data S3; Table 1). [score:1]
[1 to 20 of 1 sentences]