sort by

9 publications mentioning stu-MIR156e

Open access articles that are associated with the species Solanum tuberosum and mention the gene name MIR156e. Click the [+] symbols to view sentences that include the gene name, or the word cloud on the right for a summary.

1
[+] score: 42
Among conserved miRNA targets, most of them were found to be transcripts coding for transcription factors (Additional file 5), such as Squamosa promoter -binding protein (regulated by miR156), GRAS family transcription factors (targeted by miR171), GAMYB-like2 (targeted by miR159), APETALA2 (target of miR172), NAC domain containing protein (targeted by miR164), Auxin response factors (regulated by miR160), PHAVOLUTA-like HD-ZIPIII protein (target of miR166) and nuclear transcription factors - YA4, YA5, YA6 (targeted by miR169). [score:17]
The digital expression profile reported in this study also showed high abundance of miR156 in tuber developmental stages with highest level at PT0 (stolon development), suggesting a role of miR156 in the phase transition from basal lateral juvenile shoots to a storage organ in the process of tuber development. [score:6]
Previous studies have demonstrated that miR156 plays a vital role in controlling leaf development, apical dominance, floral transition and development [55- 57] by targeting several members of the Squamosa promoter binding protein like (SPL) family of plant-specific transcription factors. [score:5]
Interestingly, a recent study has shown that overexpression of miR156 in potato leads to development of stolon-borne aerial tubers from distal nodes [21]. [score:4]
Squamosa-promoter binding protein was predicted as the target of miR156 and miR157. [score:3]
For example, conserved miRNA - miR156 exhibited high expression during tuberization stages, with highest level at PT0 (Additional file 1). [score:3]
To date, only miR172 and miR156 have been shown to play a role in tuberization process [20, 21] and only a few miRNAs have been shown to regulate defense genes in potato [22]. [score:2]
Of the 33 conserved miRNA families, miR156, miR157, miR166 and miR168 showed high abundance, similar to those observed in other species [11, 12], each with total TPM >1,00,000 (Additional file 1). [score:1]
The second largest families, with 6 members each, were miR156, miR166 and miR172. [score:1]
[1 to 20 of 9 sentences]
2
[+] score: 13
miR161, miR168, miR169, miR171a, and miR319c of Arabidopsis thaliana are downregulated under drought stress (Sunkar and Zhu, 2004; Liu et al., 2008), and in rice and maize, miR156 is downregulated under drought stress (Wei et al., 2009; Zhou et al., 2010). [score:7]
Many conserved miRNAs of plant, such as miR156, miR159, or miR164, have been shown to target stress-related TFs including MYB and NAC family members (Burcu et al., 2016). [score:3]
Many conserved miRNAs, such as miR156, miR159, or miR164, have proved to target stress -associated MYB and NAC family members TFs across monocots and dicots (Burcu et al., 2016). [score:3]
[1 to 20 of 3 sentences]
3
[+] score: 7
In Arabidopsis, the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors SPL9 and SPL15 act redundantly to influence plastochron and over -expression of miR156, which targets multiple SPLs, shortens plastochron [18]. [score:5]
Analogous to the relationship of the plastochron 1 and 2 loci of rice [17], the SPL/miR156 regulatory module acts independently of CYP78A5/KLUH, which is a putative ortholog of rice plastochron 1 [18]. [score:2]
[1 to 20 of 2 sentences]
4
[+] score: 3
The co-infection of Nicotiana benthamiana with PVX or PVY altered the accumulation of miR156, miR171, miR168 and miR398 and their target transcripts [18]. [score:3]
[1 to 20 of 1 sentences]
5
[+] score: 2
Wu et al. [43] predicted and validated numerous similar lncRNAs in Arabidopsis and Oryza sativa that bind to miR160, miR166, miR156, miR159 and miR172, individually. [score:1]
The majority of miRNAs involved with lncRNAs were from miR156, miR171, miR172, miR1886, miR319, miR482, miR5303, miR7984, miR8007, and miR8011 (Supplementary Table S4). [score:1]
[1 to 20 of 2 sentences]
6
[+] score: 2
Other miRNAs from this paper: osa-MIR156a, osa-MIR156b, osa-MIR156c, osa-MIR156d, osa-MIR156e, osa-MIR156f, osa-MIR156g, osa-MIR156h, osa-MIR156i, osa-MIR156j, osa-MIR166a, osa-MIR166b, osa-MIR166c, osa-MIR166d, osa-MIR166e, osa-MIR166f, osa-MIR167a, osa-MIR167b, osa-MIR167c, osa-MIR169a, osa-MIR171a, osa-MIR393a, osa-MIR396a, osa-MIR396b, osa-MIR396c, osa-MIR397a, osa-MIR397b, osa-MIR398a, osa-MIR398b, osa-MIR399a, osa-MIR399b, osa-MIR399c, osa-MIR399d, osa-MIR399e, osa-MIR399f, osa-MIR399g, osa-MIR399h, osa-MIR399i, osa-MIR399j, osa-MIR399k, osa-MIR156k, osa-MIR156l, osa-MIR166k, osa-MIR166l, osa-MIR167d, osa-MIR167e, osa-MIR167f, osa-MIR167g, osa-MIR167h, osa-MIR167i, osa-MIR168a, osa-MIR168b, osa-MIR169b, osa-MIR169c, osa-MIR169d, osa-MIR169e, osa-MIR169f, osa-MIR169g, osa-MIR169h, osa-MIR169i, osa-MIR169j, osa-MIR169k, osa-MIR169l, osa-MIR169m, osa-MIR169n, osa-MIR169o, osa-MIR169p, osa-MIR169q, osa-MIR171b, osa-MIR171c, osa-MIR171d, osa-MIR171e, osa-MIR171f, osa-MIR171g, osa-MIR172a, osa-MIR172b, osa-MIR172c, osa-MIR166g, osa-MIR166h, osa-MIR166i, osa-MIR171h, osa-MIR393b, osa-MIR408, osa-MIR172d, osa-MIR171i, osa-MIR167j, osa-MIR166m, osa-MIR166j, osa-MIR396e, mtr-MIR166a, mtr-MIR169a, mtr-MIR399b, mtr-MIR399d, mtr-MIR393a, mtr-MIR399c, mtr-MIR399a, mtr-MIR399e, mtr-MIR156a, mtr-MIR171a, mtr-MIR156b, mtr-MIR167a, mtr-MIR166b, mtr-MIR169c, mtr-MIR169d, mtr-MIR169e, mtr-MIR171b, mtr-MIR166c, mtr-MIR166d, mtr-MIR169f, mtr-MIR156c, mtr-MIR156d, mtr-MIR399f, mtr-MIR399g, mtr-MIR399h, mtr-MIR399i, mtr-MIR399j, mtr-MIR399k, mtr-MIR166e, mtr-MIR156e, mtr-MIR171c, mtr-MIR398a, mtr-MIR172a, mtr-MIR393b, mtr-MIR398b, mtr-MIR168a, mtr-MIR169g, mtr-MIR156f, mtr-MIR399l, mtr-MIR156g, mtr-MIR399m, mtr-MIR399n, mtr-MIR399o, mtr-MIR398c, mtr-MIR156h, mtr-MIR166f, mtr-MIR166g, mtr-MIR171d, mtr-MIR171e, mtr-MIR396a, mtr-MIR396b, mtr-MIR169h, mtr-MIR169b, mtr-MIR156i, mtr-MIR171f, mtr-MIR399p, osa-MIR169r, sly-MIR166a, sly-MIR166b, sly-MIR167a, sly-MIR169a, sly-MIR169b, sly-MIR169c, sly-MIR169d, sly-MIR171a, sly-MIR171b, sly-MIR171c, sly-MIR171d, sly-MIR397, sly-MIR156a, sly-MIR156b, sly-MIR156c, sly-MIR172a, sly-MIR172b, sly-MIR399, osa-MIR827, osa-MIR396f, mtr-MIR2118, osa-MIR2118a, osa-MIR2118b, osa-MIR2118c, osa-MIR2118d, osa-MIR2118e, osa-MIR2118f, osa-MIR2118g, osa-MIR2118h, osa-MIR2118i, osa-MIR2118j, osa-MIR2118k, osa-MIR2118l, osa-MIR2118m, osa-MIR2118n, osa-MIR2118o, osa-MIR2118p, osa-MIR2118q, osa-MIR2118r, mtr-MIR169k, mtr-MIR169j, mtr-MIR399q, osa-MIR396g, osa-MIR396h, osa-MIR396d, osa-MIR5072, mtr-MIR4414a, mtr-MIR4414b, mtr-MIR482, mtr-MIR172b, mtr-MIR172c, mtr-MIR171h, mtr-MIR168b, mtr-MIR399r, mtr-MIR156j, sly-MIR482e, sly-MIR482a, mtr-MIR167b, mtr-MIR168c, mtr-MIR408, mtr-MIR396c, mtr-MIR171g, stu-MIR6024, sly-MIR6024, stu-MIR482c, stu-MIR482b, stu-MIR482a, stu-MIR482d, stu-MIR482e, sly-MIR482b, sly-MIR482c, stu-MIR6025, stu-MIR6026, sly-MIR6026, sly-MIR168a, sly-MIR168b, mtr-MIR169i, mtr-MIR172d, mtr-MIR397, mtr-MIR169l, mtr-MIR399s, mtr-MIR399t, stu-MIR7980a, stu-MIR7983, stu-MIR8007a, stu-MIR8007b, stu-MIR7980b, stu-MIR399a, stu-MIR399b, stu-MIR399c, stu-MIR399d, stu-MIR399e, stu-MIR399f, stu-MIR399g, stu-MIR399h, stu-MIR3627, stu-MIR171b, stu-MIR166a, stu-MIR166b, stu-MIR166c, stu-MIR166d, stu-MIR171a, stu-MIR171c, stu-MIR399i, stu-MIR827, stu-MIR172b, stu-MIR172c, stu-MIR172a, stu-MIR172d, stu-MIR172e, stu-MIR156a, stu-MIR156b, stu-MIR156c, stu-MIR156d, stu-MIR171d, stu-MIR167c, stu-MIR167b, stu-MIR167a, stu-MIR167d, stu-MIR399j, stu-MIR399k, stu-MIR399l, stu-MIR399m, stu-MIR399n, stu-MIR399o, stu-MIR393, stu-MIR398a, stu-MIR398b, stu-MIR396, stu-MIR408a, stu-MIR408b, stu-MIR397, stu-MIR171e, stu-MIR156f, stu-MIR156g, stu-MIR156h, stu-MIR156i, stu-MIR156j, stu-MIR156k, stu-MIR169a, stu-MIR169b, stu-MIR169c, stu-MIR169d, stu-MIR169e, stu-MIR169f, stu-MIR169g, stu-MIR169h, sly-MIR403, sly-MIR166c, sly-MIR156d, sly-MIR156e, sly-MIR396a, sly-MIR167b, sly-MIR482d, sly-MIR169e, sly-MIR396b, sly-MIR171e, sly-MIR172c, sly-MIR408, sly-MIR172d, sly-MIR827, sly-MIR393, sly-MIR398a, sly-MIR399b, sly-MIR6025, sly-MIR169f, sly-MIR171f
The reads number for these known miRNAs also varied to a large extent ranging from 1 to 363294, with miR166, miR156, and miR168 families having the most abundant reads in the two libraries. [score:1]
Five miRNA families (miR399, miR156, miR166, miR171, and miR172) had more than 10 members, and miR156 family, the largest family, had 23 members. [score:1]
[1 to 20 of 2 sentences]
7
[+] score: 2
Numerous miRNAs have been identified in potato [19, 20], and two of these, miR172 and miR156, have been implicated in the regulation of tuber formation [21, 22]. [score:2]
[1 to 20 of 1 sentences]
8
[+] score: 1
Several miRNA-mRNA pairs conserved across plant species, such as miR156- SPL11, miR160- ARF10, miR172- AP2, or miR396- GRF5 (Curaba et al., 2014), were confirmed also in our system (Datasets S6, S7). [score:1]
[1 to 20 of 1 sentences]
9
[+] score: 1
Additionally, non-coding RNAs (micro RNAs) were implicated as having a role in tuber formation including miR156 and miR172 [16, 17]. [score:1]
[1 to 20 of 1 sentences]